Tests/cocotb (#19)

* wip

* reorg

* update sv int

* apb4 working

* apb3 working

* version bump + ignore runner warning

* remove redundant check

* adding log on failure

* cleaning up verilator version issue

* devcontainer

* Fix missing libpython in GitHub Actions CI environment (#21)

* Initial plan

* Install libpython in GitHub Actions for cocotb tests

Co-authored-by: arnavsacheti <36746504+arnavsacheti@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: arnavsacheti <36746504+arnavsacheti@users.noreply.github.com>

---------

Co-authored-by: Copilot <198982749+Copilot@users.noreply.github.com>
This commit is contained in:
Arnav Sacheti
2025-11-10 23:00:28 -08:00
committed by GitHub
parent d7481e71ba
commit a9653c8497
25 changed files with 1417 additions and 364 deletions

View File

@@ -1,3 +1,10 @@
from pathlib import Path
"""Manifest of SystemRDL sources used by the cocotb simulations."""
rdls = map(Path, ["simple.rdl", "multiple_reg.rdl"])
RDL_CASES: list[tuple[str, str]] = [
("simple.rdl", "simple_test"),
("multiple_reg.rdl", "multi_reg"),
("deep_hierarchy.rdl", "deep_hierarchy"),
("wide_status.rdl", "wide_status"),
("variable_layout.rdl", "variable_layout"),
("asymmetric_bus.rdl", "asymmetric_bus"),
]

View File

@@ -0,0 +1,69 @@
"""Utilities for resolving cocotb signal handles across simulators."""
from __future__ import annotations
from typing import Any, Iterable
class SignalHandle:
"""
Wrapper that resolves array elements even when the simulator does not expose
unpacked arrays through ``handle[idx]``.
"""
def __init__(self, dut, name: str) -> None:
self._dut = dut
self._name = name
self._base = getattr(dut, name, None)
self._cache: dict[tuple[int, ...], Any] = {}
def resolve(self, indices: tuple[int, ...]):
if not indices:
return self._base if self._base is not None else self._lookup(tuple())
if indices not in self._cache:
self._cache[indices] = self._direct_or_lookup(indices)
return self._cache[indices]
def _direct_or_lookup(self, indices: tuple[int, ...]):
if self._base is not None:
ref = self._base
try:
for idx in indices:
ref = ref[idx]
return ref
except (IndexError, TypeError, AttributeError):
pass
return self._lookup(indices)
def _lookup(self, indices: tuple[int, ...]):
suffix = "".join(f"[{idx}]" for idx in indices)
path = f"{self._name}{suffix}"
try:
return getattr(self._dut, path)
except AttributeError:
pass
errors: list[Exception] = []
for extended in (False, True):
try:
return self._dut._id(path, extended=extended)
except (AttributeError, ValueError) as exc:
errors.append(exc)
raise AttributeError(f"Unable to resolve handle '{path}' via dut._id") from errors[-1]
def resolve_handle(handle, indices: Iterable[int]):
"""Resolve either a regular cocotb handle or a ``SignalHandle`` wrapper."""
index_tuple = tuple(indices)
if isinstance(handle, SignalHandle):
return handle.resolve(index_tuple)
ref = handle
for idx in index_tuple:
ref = ref[idx]
return ref

View File

@@ -0,0 +1,105 @@
regfile port_rf {
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} port_enable[0:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} port_speed[3:1];
field {
sw = rw;
hw = rw;
reset = 0x0;
} port_width[8:4];
} control @ 0x0;
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} error_count[15:0];
field {
sw = r;
hw = w;
reset = 0x0;
} retry_count[31:16];
} counters @ 0x4;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} qos[7:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} virtual_channel[9:8];
} qos @ 0x8;
};
addrmap asymmetric_bus {
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} control[3:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} id[15:4];
} control @ 0x0;
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} status_flags[19:0];
} status @ 0x4;
reg {
regwidth = 64;
field {
sw = rw;
hw = rw;
reset = 0x00abcdef;
} timestamp_low[31:0];
field {
sw = rw;
hw = rw;
reset = 0x00123456;
} timestamp_high[55:32];
} timestamp @ 0x8;
reg {
regwidth = 128;
field {
sw = rw;
hw = rw;
reset = 0x0;
} extended_id[63:0];
field {
sw = rw;
hw = rw;
reset = 0x1;
} parity[64:64];
} extended @ 0x10;
port_rf port[6] @ 0x40 += 0x20;
};

View File

@@ -0,0 +1,115 @@
addrmap deep_hierarchy {
regfile context_rf {
reg {
field {
sw = rw;
hw = r;
reset = 0x1;
} enable[7:0];
field {
sw = r;
hw = w;
onread = rclr;
reset = 0x0;
} status[15:8];
field {
sw = rw;
hw = rw;
reset = 0x55;
} mode[23:16];
} command @ 0x0;
reg {
field {
sw = rw;
hw = rw;
reset = 0x1234;
} threshold[15:0];
} threshold @ 0x4;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} counter[31:0];
} counter @ 0x8;
};
regfile engine_rf {
context_rf context[3] @ 0x0;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} timeout[15:0];
field {
sw = rw;
hw = rw;
reset = 0x1;
} priority[19:16];
} config @ 0x30;
reg {
field {
sw = r;
hw = w;
onread = rclr;
reset = 0x0;
} error[31:0];
} error_log @ 0x34;
};
addrmap fabric_slice {
engine_rf engines[4] @ 0x0;
regfile monitor_rf {
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} perf_count[31:0];
} perf @ 0x0;
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} last_error[31:0];
} last_error @ 0x4;
};
monitor_rf monitor @ 0x400;
reg {
field {
sw = rw;
hw = rw;
reset = 0xdeadbeef;
} fabric_ctrl[31:0];
} fabric_ctrl @ 0x500;
};
fabric_slice slices[2] @ 0x0 += 0x800;
reg {
field {
sw = rw;
hw = rw;
reset = 0x1;
} global_enable[0:0];
field {
sw = rw;
hw = rw;
reset = 0x4;
} debug_level[3:1];
} global_control @ 0x1000;
};

View File

@@ -0,0 +1,156 @@
reg ctrl_reg_t {
desc = "Control register shared across channels.";
field {
sw = rw;
hw = rw;
reset = 0x1;
} enable[0:0];
field {
sw = rw;
hw = rw;
reset = 0x2;
} mode[3:1];
field {
sw = rw;
hw = rw;
reset = 0x0;
} prescale[11:4];
};
regfile channel_rf {
ctrl_reg_t control @ 0x0;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} gain[11:0];
field {
sw = rw;
hw = rw;
reset = 0x200;
} offset[23:12];
} calibrate @ 0x4;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} sample_count[15:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} error_count[31:16];
} counters @ 0x8;
};
regfile slice_rf {
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} slope[15:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} intercept[31:16];
} calibration @ 0x0;
reg {
regwidth = 64;
field {
sw = r;
hw = w;
reset = 0x0;
} min_val[31:0];
field {
sw = r;
hw = w;
reset = 0x0;
} max_val[63:32];
} range @ 0x4;
};
regfile tile_rf {
channel_rf channel[3] @ 0x0;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} tile_mode[1:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} tile_enable[2:2];
} tile_ctrl @ 0x100;
slice_rf slice[2] @ 0x200;
};
regfile summary_rf {
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} total_errors[31:0];
} errors @ 0x0;
reg {
field {
sw = r;
hw = w;
reset = 0x0;
} total_samples[31:0];
} samples @ 0x4;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} interrupt_enable[7:0];
} interrupt_enable @ 0x8;
};
addrmap variable_layout {
tile_rf tiles[2] @ 0x0;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} watchdog_enable[0:0];
field {
sw = rw;
hw = rw;
reset = 0x100;
} watchdog_timeout[16:1];
field {
sw = rw;
hw = rw;
reset = 0x0;
} watchdog_mode[18:17];
} watchdog @ 0x2000;
summary_rf summary @ 0x3000;
};

View File

@@ -0,0 +1,69 @@
reg status_reg_t {
regwidth = 64;
desc = "Status register capturing wide flags and sticky bits.";
field {
sw = r;
hw = w;
onread = rclr;
reset = 0x0;
} flags[62:0];
field {
sw = rw;
hw = r;
reset = 0x1;
} sticky_bit[63:63];
};
reg metrics_reg_t {
regwidth = 64;
desc = "Metrics register pairing counters with thresholds.";
field {
sw = r;
hw = w;
reset = 0x0;
} count[31:0];
field {
sw = rw;
hw = rw;
reset = 0x0;
} threshold[63:32];
};
addrmap wide_status {
status_reg_t status_blocks[16] @ 0x0;
metrics_reg_t metrics[4] @ 0x400;
reg {
regwidth = 128;
field {
sw = rw;
hw = rw;
reset = 0x0;
} configuration[127:0];
} configuration @ 0x800;
reg {
field {
sw = rw;
hw = rw;
reset = 0x0;
} version_major[7:0];
field {
sw = rw;
hw = rw;
reset = 0x1;
} version_minor[15:8];
field {
sw = rw;
hw = rw;
reset = 0x0100;
} build[31:16];
} version @ 0x900;
};

View File

@@ -1,9 +1,13 @@
"""Common utilities for cocotb testbenches."""
from __future__ import annotations
from collections import defaultdict
from pathlib import Path
from typing import Any
from systemrdl import RDLCompiler
from systemrdl.node import AddressableNode, AddrmapNode, RegNode
from peakrdl_busdecoder.cpuif.base_cpuif import BaseCpuif
from peakrdl_busdecoder.exporter import BusDecoderExporter
@@ -65,3 +69,206 @@ def get_verilog_sources(module_path: Path, package_path: Path, intf_files: list[
# Add module file
sources.append(str(module_path))
return sources
def prepare_cpuif_case(
rdl_source: str,
top_name: str,
output_dir: Path,
cpuif_cls: type[BaseCpuif],
*,
control_signal: str,
max_samples_per_master: int = 3,
exporter_kwargs: dict[str, Any] | None = None,
) -> tuple[Path, Path, dict[str, Any]]:
"""
Compile SystemRDL, export the CPUIF, and build a configuration payload for cocotb tests.
Parameters
----------
rdl_source:
Path to the SystemRDL source file.
top_name:
Name of the top-level addrmap to elaborate.
output_dir:
Directory where generated HDL will be written.
cpuif_cls:
CPUIF implementation class to use during export.
control_signal:
Name of the control signal used to identify master ports
(``"PSEL"`` for APB, ``"AWVALID"`` for AXI4-Lite, etc.).
max_samples_per_master:
Limit for the number of register addresses sampled per master in the test matrix.
exporter_kwargs:
Optional keyword overrides passed through to :class:`BusDecoderExporter`.
Returns
-------
tuple
``(module_path, package_path, config_dict)``, where the configuration dictionary
is JSON-serializable and describes masters, indices, and sampled transactions.
"""
compiler = RDLCompiler()
compiler.compile_file(rdl_source)
root = compiler.elaborate(top_name)
top_node = root.top # type: ignore[assignment]
export_kwargs: dict[str, Any] = {"cpuif_cls": cpuif_cls}
if exporter_kwargs:
export_kwargs.update(exporter_kwargs)
exporter = BusDecoderExporter()
exporter.export(root, str(output_dir), **export_kwargs)
module_name = export_kwargs.get("module_name", top_name)
package_name = export_kwargs.get("package_name", f"{top_name}_pkg")
module_path = Path(output_dir) / f"{module_name}.sv"
package_path = Path(output_dir) / f"{package_name}.sv"
config = _build_case_config(
top_node,
exporter.cpuif,
control_signal,
max_samples_per_master=max_samples_per_master,
)
config["address_width"] = exporter.cpuif.addr_width
config["data_width"] = exporter.cpuif.data_width
config["byte_width"] = exporter.cpuif.data_width // 8
return module_path, package_path, config
def _build_case_config(
top_node: AddrmapNode,
cpuif: BaseCpuif,
control_signal: str,
*,
max_samples_per_master: int,
) -> dict[str, Any]:
master_entries: dict[str, dict[str, Any]] = {}
for child in cpuif.addressable_children:
signal = cpuif.signal(control_signal, child)
# Example: m_apb_tiles_PSEL[N_TILESS] -> m_apb_tiles
base = signal.split("[", 1)[0]
suffix = f"_{control_signal}"
if not base.endswith(suffix):
raise ValueError(f"Unable to derive port prefix from '{signal}'")
port_prefix = base[: -len(suffix)]
master_entries[child.inst_name] = {
"inst_name": child.inst_name,
"port_prefix": port_prefix,
"is_array": bool(child.is_array),
"dimensions": list(child.array_dimensions or []),
"indices": set(),
}
# Map each register to its top-level master and collect addresses
groups: dict[tuple[str, tuple[int, ...]], list[tuple[int, str]]] = defaultdict(list)
def visit(node: AddressableNode) -> None:
if isinstance(node, RegNode):
master = node # type: AddressableNode
while master.parent is not top_node:
parent = master.parent
if not isinstance(parent, AddressableNode):
raise RuntimeError("Encountered unexpected hierarchy while resolving master node")
master = parent
inst_name = master.inst_name
if inst_name not in master_entries:
# Handles cases where the register itself is the master (direct child of top)
signal = cpuif.signal(control_signal, master)
base = signal.split("[", 1)[0]
suffix = f"_{control_signal}"
if not base.endswith(suffix):
raise ValueError(f"Unable to derive port prefix from '{signal}'")
port_prefix = base[: -len(suffix)]
master_entries[inst_name] = {
"inst_name": inst_name,
"port_prefix": port_prefix,
"is_array": bool(master.is_array),
"dimensions": list(master.array_dimensions or []),
"indices": set(),
}
idx_tuple = tuple(master.current_idx or [])
master_entries[inst_name]["indices"].add(idx_tuple)
relative_addr = int(node.absolute_address) - int(top_node.absolute_address)
full_path = node.get_path()
label = full_path.split(".", 1)[1] if "." in full_path else full_path
groups[(inst_name, idx_tuple)].append((relative_addr, label))
for child in node.children(unroll=True):
if isinstance(child, AddressableNode):
visit(child)
visit(top_node)
masters_list = []
for entry in master_entries.values():
indices = entry["indices"] or {()}
entry["indices"] = [list(idx) for idx in sorted(indices)]
masters_list.append(
{
"inst_name": entry["inst_name"],
"port_prefix": entry["port_prefix"],
"is_array": entry["is_array"],
"dimensions": entry["dimensions"],
"indices": entry["indices"],
}
)
transactions = []
for (inst_name, idx_tuple), items in groups.items():
addresses = sorted({addr for addr, _ in items})
samples = _sample_addresses(addresses, max_samples_per_master)
for addr in samples:
label = next(lbl for candidate, lbl in items if candidate == addr)
transactions.append(
{
"address": addr,
"master": inst_name,
"index": list(idx_tuple),
"label": label,
}
)
transactions.sort(key=lambda item: (item["master"], item["index"], item["address"]))
masters_list.sort(key=lambda item: item["inst_name"])
return {
"masters": masters_list,
"transactions": transactions,
}
def _sample_addresses(addresses: list[int], max_samples: int) -> list[int]:
if len(addresses) <= max_samples:
return addresses
samples: list[int] = []
samples.append(addresses[0])
if len(addresses) > 1:
samples.append(addresses[-1])
if len(addresses) > 2:
mid = addresses[len(addresses) // 2]
if mid not in samples:
samples.append(mid)
idx = 1
while len(samples) < max_samples:
pos = (len(addresses) * idx) // max_samples
candidate = addresses[min(pos, len(addresses) - 1)]
if candidate not in samples:
samples.append(candidate)
idx += 1
samples.sort()
return samples