interface apb3_intf_driver #( parameter DATA_WIDTH = 32, parameter ADDR_WIDTH = 32 )( input wire clk, apb3_intf.master m_apb ); timeunit 1ps; timeprecision 1ps; logic PSEL; logic PENABLE; logic PWRITE; logic [ADDR_WIDTH-1:0] PADDR; logic [DATA_WIDTH-1:0] PWDATA; logic [DATA_WIDTH-1:0] PRDATA; logic PREADY; logic PSLVERR; assign m_apb.PSEL = PSEL; assign m_apb.PENABLE = PENABLE; assign m_apb.PWRITE = PWRITE; assign m_apb.PADDR = PADDR; assign m_apb.PWDATA = PWDATA; assign PRDATA = m_apb.PRDATA; assign PREADY = m_apb.PREADY; assign PSLVERR = m_apb.PSLVERR; default clocking cb @(posedge clk); default input #1step output #1; output PSEL; output PENABLE; output PWRITE; output PADDR; output PWDATA; input PRDATA; input PREADY; input PSLVERR; endclocking task reset(); cb.PSEL <= '0; cb.PENABLE <= '0; cb.PWRITE <= '0; cb.PADDR <= '0; cb.PWDATA <= '0; endtask task write(logic [ADDR_WIDTH-1:0] addr, logic [DATA_WIDTH-1:0] data); ##0; // Initiate transfer cb.PSEL <= '1; cb.PENABLE <= '0; cb.PWRITE <= '1; cb.PADDR <= addr; cb.PWDATA <= data; @(cb); // active phase cb.PENABLE <= '1; @(cb); // Wait for response while(cb.PREADY !== 1'b1) @(cb); reset(); endtask task read(logic [ADDR_WIDTH-1:0] addr, output logic [DATA_WIDTH-1:0] data); ##0; // Initiate transfer cb.PSEL <= '1; cb.PENABLE <= '0; cb.PWRITE <= '0; cb.PADDR <= addr; cb.PWDATA <= '0; @(cb); // active phase cb.PENABLE <= '1; @(cb); // Wait for response while(cb.PREADY !== 1'b1) @(cb); data = cb.PRDATA; reset(); endtask initial begin reset(); end endinterface