module super6502( input clk_50, input logic rst_n, input logic button_1, input logic [15:0] cpu_addr, inout logic [7:0] cpu_data, input logic cpu_vpb, input logic cpu_mlb, input logic cpu_rwb, input logic cpu_sync, output logic cpu_led, output logic cpu_resb, output logic cpu_rdy, output logic cpu_sob, output logic cpu_irqb, output logic cpu_phi2, output logic cpu_be, output logic cpu_nmib, output logic [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, input logic UART_RXD, output logic UART_TXD, ///////// SDRAM ///////// output DRAM_CLK, output DRAM_CKE, output [12: 0] DRAM_ADDR, output [ 1: 0] DRAM_BA, inout [15: 0] DRAM_DQ, output DRAM_LDQM, output DRAM_UDQM, output DRAM_CS_N, output DRAM_WE_N, output DRAM_CAS_N, output DRAM_RAS_N ); logic rst; assign rst = ~rst_n; logic clk; logic [7:0] cpu_data_in; assign cpu_data_in = cpu_data; logic [7:0] cpu_data_out; assign cpu_data = cpu_rwb ? cpu_data_out : 'z; logic [7:0] rom_data_out; logic [7:0] ram_data_out; logic [7:0] sdram_data_out; logic [7:0] uart_data_out; logic [7:0] irq_data_out; logic ram_cs; logic sdram_cs; logic rom_cs; logic hex_cs; logic uart_cs; logic irq_cs; cpu_clk cpu_clk( .inclk0(clk_50), .c0(clk) ); always @(posedge clk) begin cpu_phi2 <= ~cpu_phi2; end assign cpu_rdy = '1; assign cpu_sob = '0; assign cpu_resb = rst_n; assign cpu_be = '1; assign cpu_nmib = '1; assign cpu_irqb = irq_data_out == 0; addr_decode decode( .addr(cpu_addr), .ram_cs(ram_cs), .sdram_cs(sdram_cs), .rom_cs(rom_cs), .hex_cs(hex_cs), .uart_cs(uart_cs), .irq_cs(irq_cs) ); always_comb begin if (ram_cs) cpu_data_out = ram_data_out; else if (sdram_cs) cpu_data_out = sdram_data_out; else if (rom_cs) cpu_data_out = rom_data_out; else if (uart_cs) cpu_data_out = uart_data_out; else if (irq_cs) cpu_data_out = irq_data_out; else cpu_data_out = 'x; end enum logic {S_0, S_1 } teststate, next_teststate; logic ack; logic write; logic _sdram_cs; always @(posedge clk_50) begin if (rst) teststate <= S_0; else teststate <= next_teststate; end always_comb begin next_teststate = teststate; write = '0; _sdram_cs = '0; case (teststate) S_0: begin write = sdram_cs & ~cpu_rwb & cpu_phi2; _sdram_cs = sdram_cs & cpu_phi2; if (sdram_cs & ~cpu_rwb & ack) next_teststate = S_1; end S_1: begin if (~(sdram_cs & ~cpu_rwb)) next_teststate = S_0; end endcase end sdram_platform u0 ( .clk_clk (clk_50), // clk.clk .reset_reset_n (1'b1), // reset.reset_n .ext_bus_address (cpu_addr), // ext_bus.address .ext_bus_byte_enable (1'b1), // .byte_enable .ext_bus_read (_sdram_cs & cpu_rwb), // .read .ext_bus_write (write), // .write .ext_bus_write_data (cpu_data_in), // .write_data .ext_bus_acknowledge (ack), // .acknowledge .ext_bus_read_data (sdram_data_out), // .read_data //SDRAM .sdram_clk_clk(DRAM_CLK), //clk_sdram.clk .sdram_wire_addr(DRAM_ADDR), //sdram_wire.addr .sdram_wire_ba(DRAM_BA), //.ba .sdram_wire_cas_n(DRAM_CAS_N), //.cas_n .sdram_wire_cke(DRAM_CKE), //.cke .sdram_wire_cs_n(DRAM_CS_N), //.cs_n .sdram_wire_dq(DRAM_DQ), //.dq .sdram_wire_dqm({DRAM_UDQM,DRAM_LDQM}), //.dqm .sdram_wire_ras_n(DRAM_RAS_N), //.ras_n .sdram_wire_we_n(DRAM_WE_N) //.we_n ); ram main_memory( .address(cpu_addr[14:0]), .clock(clk), .data(cpu_data_in), .wren(~cpu_rwb & ram_cs), .q(ram_data_out) ); rom boot_rom( .address(cpu_addr[14:0]), .clock(clk), .q(rom_data_out) ); SevenSeg segs( .clk(clk), .rst(rst), .rw(cpu_rwb), .data(cpu_data_in), .cs(hex_cs), .addr(cpu_addr[1:0]), .HEX0(HEX0), .HEX1(HEX1), .HEX2(HEX2), .HEX3(HEX3), .HEX4(HEX4), .HEX5(HEX5) ); logic uart_irq; uart uart( .clk_50(clk_50), .clk(clk), .rst(rst), .rw(cpu_rwb), .data_in(cpu_data_in), .cs(uart_cs), .addr(cpu_addr[1:0]), .RXD(UART_RXD), .TXD(UART_TXD), .irq(uart_irq), .data_out(uart_data_out) ); always_ff @(posedge clk_50) begin if (rst) irq_data_out <= '0; else if (irq_cs && ~cpu_rwb) irq_data_out <= irq_data_out & cpu_data_in; else begin if (~button_1) irq_data_out[0] <= '1; if (uart_irq) irq_data_out[1] <= '1; end end endmodule