eth: Add Ethernet example design for VC709

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-11-08 16:06:12 -08:00
parent 2d061a76f2
commit 4dbfc4d388
12 changed files with 2291 additions and 0 deletions

View File

@@ -0,0 +1,405 @@
// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga #
(
// simulation (set to avoid vendor primitives)
parameter logic SIM = 1'b0,
// vendor ("GENERIC", "XILINX", "ALTERA")
parameter string VENDOR = "XILINX",
// device family
parameter string FAMILY = "virtex7",
// 10G MAC configuration
parameter logic CFG_LOW_LATENCY = 1'b1,
parameter logic COMBINED_MAC_PCS = 1'b1
)
(
/*
* Clock: 200MHz LVDS
*/
input wire logic clk_200mhz_p,
input wire logic clk_200mhz_n,
input wire logic reset,
/*
* GPIO
*/
input wire logic btnu,
input wire logic btnl,
input wire logic btnd,
input wire logic btnr,
input wire logic btnc,
input wire logic [7:0] sw,
output wire logic [7:0] led,
/*
* UART: 115200 bps, 8N1
*/
input wire logic uart_rxd,
output wire logic uart_txd,
input wire logic uart_rts,
output wire logic uart_cts,
/*
* I2C
*/
inout wire logic i2c_scl,
inout wire logic i2c_sda,
output wire logic i2c_mux_reset,
/*
* Ethernet: SFP+
*/
input wire logic sfp_rx_p[4],
input wire logic sfp_rx_n[4],
output wire logic sfp_tx_p[4],
output wire logic sfp_tx_n[4],
input wire logic sfp_mgt_refclk_p,
input wire logic sfp_mgt_refclk_n,
// input wire logic sma_mgt_refclk_p,
// input wire logic sma_mgt_refclk_n,
// input wire logic sfp_recclk_p,
// input wire logic sfp_recclk_n,
output wire logic si5324_rst,
input wire logic si5324_int,
input wire logic sfp_mod_detect[4],
output wire logic [1:0] sfp_rs[4],
input wire logic sfp_los[4],
output wire logic sfp_tx_disable[4],
input wire logic sfp_tx_fault[4]
);
// Clock and reset
wire clk_200mhz_ibufg;
// Internal 125 MHz clock
wire clk_125mhz_mmcm_out;
wire clk_125mhz_int;
wire rst_125mhz_int;
wire mmcm_rst = reset;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFGDS
clk_200mhz_ibufgds_inst (
.I(clk_200mhz_p),
.IB(clk_200mhz_n),
.O(clk_200mhz_ibufg)
);
// MMCM instance
MMCME2_BASE #(
// 200 MHz input
.CLKIN1_PERIOD(5.0),
.REF_JITTER1(0.010),
// 200 MHz input / 1 = 200 MHz PFD (range 10 MHz to 500 MHz)
.DIVCLK_DIVIDE(1),
// 200 MHz PFD * 5 = 1000 MHz VCO (range 600 MHz to 1440 MHz)
.CLKFBOUT_MULT_F(5),
.CLKFBOUT_PHASE(0),
// 1000 MHz VCO / 8 = 125 MHz, 0 degrees
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// Not used
.CLKOUT1_DIVIDE(1),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
// Not used
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// 200 MHz input
.CLKIN1(clk_200mhz_ibufg),
// direct clkfb feeback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(clk_125mhz_mmcm_out),
.CLKOUT0B(),
// Not used
.CLKOUT1(),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(mmcm_rst),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm_locked)
);
BUFG
clk_bufg_inst (
.I(clk_125mhz_mmcm_out),
.O(clk_125mhz_int)
);
taxi_sync_reset #(
.N(4)
)
sync_reset_inst (
.clk(clk_125mhz_int),
.rst(~mmcm_locked),
.out(rst_125mhz_int)
);
// GPIO
wire btnu_int;
wire btnl_int;
wire btnd_int;
wire btnr_int;
wire btnc_int;
wire [7:0] sw_int;
taxi_debounce_switch #(
.WIDTH(5+8),
.N(4),
.RATE(125000)
)
debounce_switch_inst (
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
.in({btnu,
btnl,
btnd,
btnr,
btnc,
sw}),
.out({btnu_int,
btnl_int,
btnd_int,
btnr_int,
btnc_int,
sw_int})
);
wire uart_rxd_int;
wire uart_rts_int;
taxi_sync_signal #(
.WIDTH(2),
.N(2)
)
sync_signal_inst (
.clk(clk_125mhz_int),
.in({uart_rxd, uart_rts}),
.out({uart_rxd_int, uart_rts_int})
);
wire [7:0] led_int;
// I2C
wire i2c_scl_i;
wire i2c_scl_o;
wire i2c_sda_i;
wire i2c_sda_o;
assign i2c_scl_i = i2c_scl;
assign i2c_scl = i2c_scl_o ? 1'bz : 1'b0;
assign i2c_sda_i = i2c_sda;
assign i2c_sda = i2c_sda_o ? 1'bz : 1'b0;
wire i2c_init_scl_i = i2c_scl_i;
wire i2c_init_scl_o;
wire i2c_init_sda_i = i2c_sda_i;
wire i2c_init_sda_o;
wire i2c_int_scl_i = i2c_scl_i;
wire i2c_int_scl_o;
wire i2c_int_sda_i = i2c_sda_i;
wire i2c_int_sda_o;
assign i2c_scl_o = i2c_init_scl_o & i2c_int_scl_o;
assign i2c_sda_o = i2c_init_sda_o & i2c_int_sda_o;
// Si5324 init
taxi_axis_if #(.DATA_W(12)) si5324_i2c_cmd();
taxi_axis_if #(.DATA_W(8)) si5324_i2c_tx();
taxi_axis_if #(.DATA_W(8)) si5324_i2c_rx();
assign si5324_i2c_rx.tready = 1'b1;
wire si5324_i2c_busy;
assign si5324_rst = ~rst_125mhz_int;
taxi_i2c_master
si5324_i2c_master_inst (
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
/*
* Host interface
*/
.s_axis_cmd(si5324_i2c_cmd),
.s_axis_tx(si5324_i2c_tx),
.m_axis_rx(si5324_i2c_rx),
/*
* I2C interface
*/
.scl_i(i2c_init_scl_i),
.scl_o(i2c_init_scl_o),
.sda_i(i2c_init_sda_i),
.sda_o(i2c_init_sda_o),
/*
* Status
*/
.busy(),
.bus_control(),
.bus_active(),
.missed_ack(),
/*
* Configuration
*/
.prescale(SIM ? 32 : 312),
.stop_on_idle(1)
);
si5324_i2c_init #(
.SIM_SPEEDUP(SIM)
)
si5324_i2c_init_inst (
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
/*
* I2C master interface
*/
.m_axis_cmd(si5324_i2c_cmd),
.m_axis_tx(si5324_i2c_tx),
/*
* Status
*/
.busy(si5324_i2c_busy),
/*
* Configuration
*/
.start(1'b1)
);
fpga_core #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY),
.CFG_LOW_LATENCY(CFG_LOW_LATENCY),
.COMBINED_MAC_PCS(COMBINED_MAC_PCS)
)
core_inst (
/*
* Clock: 125MHz
* Synchronous reset
*/
.clk_125mhz(clk_125mhz_int),
.rst_125mhz(rst_125mhz_int),
/*
* GPIO
*/
.btnu(btnu_int),
.btnl(btnl_int),
.btnd(btnd_int),
.btnr(btnr_int),
.btnc(btnc_int),
.sw(sw_int),
.led(led_int),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
.uart_rts(uart_rts_int),
.uart_cts(uart_cts),
/*
* I2C
*/
.i2c_scl_i(i2c_int_scl_i),
.i2c_scl_o(i2c_int_scl_o),
.i2c_sda_i(i2c_int_sda_i),
.i2c_sda_o(i2c_int_sda_o),
/*
* Ethernet: SFP+
*/
.sfp_rx_p(sfp_rx_p),
.sfp_rx_n(sfp_rx_n),
.sfp_tx_p(sfp_tx_p),
.sfp_tx_n(sfp_tx_n),
.sfp_mgt_refclk_p(sfp_mgt_refclk_p),
.sfp_mgt_refclk_n(sfp_mgt_refclk_n),
// .sma_mgt_refclk_p(sma_mgt_refclk_p),
// .sma_mgt_refclk_n(sma_mgt_refclk_n),
// .sfp_recclk_p(sfp_recclk_p),
// .sfp_recclk_n(sfp_recclk_n),
.sfp_mod_detect(sfp_mod_detect),
.sfp_rs(sfp_rs),
.sfp_los(sfp_los),
.sfp_tx_disable(sfp_tx_disable),
.sfp_tx_fault(sfp_tx_fault)
);
endmodule
`resetall