apb: Add APB dual-port RAM module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-09-30 15:25:21 -07:00
parent f25e41de18
commit 952232ad66
5 changed files with 564 additions and 0 deletions

View File

@@ -0,0 +1,186 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* APM RAM
*/
module taxi_apb_dp_ram #
(
// Width of address bus in bits
parameter ADDR_W = 16,
// Extra pipeline register on output
parameter logic PIPELINE_OUTPUT = 1'b0
)
(
/*
* Port A
*/
input wire logic a_clk,
input wire logic a_rst,
taxi_apb_if.slv s_apb_a,
/*
* Port B
*/
input wire logic b_clk,
input wire logic b_rst,
taxi_apb_if.slv s_apb_b
);
// extract parameters
localparam DATA_W = s_apb_a.DATA_W;
localparam STRB_W = s_apb_a.STRB_W;
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
localparam BYTE_LANES = STRB_W;
localparam BYTE_W = DATA_W/BYTE_LANES;
// check configuration
if (BYTE_W * STRB_W != DATA_W)
$fatal(0, "Error: APB data width not evenly divisible (instance %m)");
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
$fatal(0, "Error: APB byte lane count must be even power of two (instance %m)");
if (s_apb_a.DATA_W != s_apb_b.DATA_W)
$fatal(0, "Error: APB interface configuration mismatch (instance %m)");
if (s_apb_a.ADDR_W < ADDR_W || s_apb_a.ADDR_W < ADDR_W)
$fatal(0, "Error: APB address width is insufficient (instance %m)");
logic mem_wr_en_a;
logic mem_rd_en_a;
logic mem_wr_en_b;
logic mem_rd_en_b;
logic s_apb_a_pready_reg = 1'b0, s_apb_a_pready_next;
logic s_apb_a_pready_pipe_reg = 1'b0;
logic [DATA_W-1:0] s_apb_a_prdata_reg = '0, s_apb_a_prdata_next;
logic [DATA_W-1:0] s_apb_a_prdata_pipe_reg = '0;
logic s_apb_b_pready_reg = 1'b0, s_apb_b_pready_next;
logic s_apb_b_pready_pipe_reg = 1'b0;
logic [DATA_W-1:0] s_apb_b_prdata_reg = '0, s_apb_b_prdata_next;
logic [DATA_W-1:0] s_apb_b_prdata_pipe_reg = '0;
// verilator lint_off MULTIDRIVEN
// (* RAM_STYLE="BLOCK" *)
logic [DATA_W-1:0] mem[2**VALID_ADDR_W];
// verilator lint_on MULTIDRIVEN
wire [VALID_ADDR_W-1:0] s_apb_a_paddr_valid = VALID_ADDR_W'(s_apb_a.paddr >> (ADDR_W - VALID_ADDR_W));
wire [VALID_ADDR_W-1:0] s_apb_b_paddr_valid = VALID_ADDR_W'(s_apb_b.paddr >> (ADDR_W - VALID_ADDR_W));
assign s_apb_a.prdata = PIPELINE_OUTPUT ? s_apb_a_prdata_pipe_reg : s_apb_a_prdata_reg;
assign s_apb_a.pready = PIPELINE_OUTPUT ? s_apb_a_pready_pipe_reg : s_apb_a_pready_reg;
assign s_apb_a.pslverr = 1'b0;
assign s_apb_a.pruser = '0;
assign s_apb_a.pbuser = '0;
assign s_apb_b.prdata = PIPELINE_OUTPUT ? s_apb_b_prdata_pipe_reg : s_apb_b_prdata_reg;
assign s_apb_b.pready = PIPELINE_OUTPUT ? s_apb_b_pready_pipe_reg : s_apb_b_pready_reg;
assign s_apb_b.pslverr = 1'b0;
assign s_apb_b.pruser = '0;
assign s_apb_b.pbuser = '0;
initial begin
// two nested loops for smaller number of iterations per loop
// workaround for synthesizer complaints about large loop counts
for (integer i = 0; i < 2**VALID_ADDR_W; i = i + 2**(VALID_ADDR_W/2)) begin
for (integer j = i; j < i + 2**(VALID_ADDR_W/2); j = j + 1) begin
mem[j] = '0;
end
end
end
always_comb begin
mem_wr_en_a = 1'b0;
mem_rd_en_a = 1'b0;
s_apb_a_pready_next = 1'b0;
if (s_apb_a.psel && s_apb_a.penable && (!s_apb_a_pready_reg && (PIPELINE_OUTPUT || !s_apb_a_pready_pipe_reg))) begin
s_apb_a_pready_next = 1'b1;
if (s_apb_a.pwrite) begin
mem_wr_en_a = 1'b1;
end else begin
mem_rd_en_a = 1'b1;
end
end
end
always_ff @(posedge a_clk) begin
s_apb_a_pready_reg <= s_apb_a_pready_next;
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
if (mem_wr_en_a && s_apb_a.pstrb[i]) begin
mem[s_apb_a_paddr_valid][BYTE_W*i +: BYTE_W] <= s_apb_a.pwdata[BYTE_W*i +: BYTE_W];
end
end
if (mem_rd_en_a) begin
s_apb_a_prdata_reg <= mem[s_apb_a_paddr_valid];
end
s_apb_a_prdata_pipe_reg <= s_apb_a_prdata_reg;
s_apb_a_pready_pipe_reg <= s_apb_a_pready_reg;
if (a_rst) begin
s_apb_a_pready_reg <= 1'b0;
end
end
always_comb begin
mem_wr_en_b = 1'b0;
mem_rd_en_b = 1'b0;
s_apb_b_pready_next = 1'b0;
if (s_apb_b.psel && s_apb_b.penable && (!s_apb_b_pready_reg && (PIPELINE_OUTPUT || !s_apb_b_pready_pipe_reg))) begin
s_apb_b_pready_next = 1'b1;
if (s_apb_b.pwrite) begin
mem_wr_en_b = 1'b1;
end else begin
mem_rd_en_b = 1'b1;
end
end
end
always_ff @(posedge b_clk) begin
s_apb_b_pready_reg <= s_apb_b_pready_next;
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
if (mem_wr_en_b && s_apb_b.pstrb[i]) begin
mem[s_apb_b_paddr_valid][BYTE_W*i +: BYTE_W] <= s_apb_b.pwdata[BYTE_W*i +: BYTE_W];
end
end
if (mem_rd_en_b) begin
s_apb_b_prdata_reg <= mem[s_apb_b_paddr_valid];
end
s_apb_b_prdata_pipe_reg <= s_apb_b_prdata_reg;
s_apb_b_pready_pipe_reg <= s_apb_b_pready_reg;
if (b_rst) begin
s_apb_b_pready_reg <= 1'b0;
end
end
endmodule
`resetall