axis: Add AXI stream demultiplexer module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-07-30 19:10:48 -07:00
parent b266aa2949
commit d10e3cf5c0
5 changed files with 657 additions and 0 deletions

View File

@@ -0,0 +1,280 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream demultiplexer
*/
module taxi_axis_demux #
(
// Number of AXI stream outputs
parameter M_COUNT = 4,
// route via tdest
parameter logic TDEST_ROUTE = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis[M_COUNT],
/*
* Control
*/
input wire logic enable,
input wire logic drop,
input wire logic [$clog2(M_COUNT)-1:0] select
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis[0].KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis[0].STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis[0].LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis[0].ID_EN;
localparam ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis[0].DEST_EN;
localparam S_DEST_W = s_axis.DEST_W;
localparam M_DEST_W = m_axis[0].DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis[0].USER_EN;
localparam USER_W = s_axis.USER_W;
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam M_DEST_W_INT = M_DEST_W > 0 ? M_DEST_W : 1;
// check configuration
if (m_axis[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis[0].KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
if (TDEST_ROUTE) begin
if (!DEST_EN)
$fatal(0, "Error: TDEST_ROUTE set requires DEST_EN set (instance %m)");
if (S_DEST_W < CL_M_COUNT)
$fatal(0, "Error: S_DEST_W too small for port count (instance %m)");
end
logic [CL_M_COUNT-1:0] select_reg = '0, select_ctl, select_next;
logic drop_reg = 1'b0, drop_ctl, drop_next;
logic frame_reg = 1'b0, frame_ctl, frame_next;
logic s_axis_tready_reg = 1'b0, s_axis_tready_next;
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic [KEEP_W-1:0] m_axis_tstrb_int;
logic [M_COUNT-1:0] m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [ID_W-1:0] m_axis_tid_int;
logic [M_DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis.tready = s_axis_tready_reg && enable;
always_comb begin
select_next = select_reg;
select_ctl = select_reg;
drop_next = drop_reg;
drop_ctl = drop_reg;
frame_next = frame_reg;
frame_ctl = frame_reg;
if (s_axis.tvalid && s_axis.tready) begin
// end of frame detection
if (s_axis.tlast) begin
frame_next = 1'b0;
drop_next = 1'b0;
end
end
if (!frame_reg && s_axis.tvalid && s_axis.tready) begin
// start of frame, grab select value
if (TDEST_ROUTE) begin
if (M_COUNT > 1) begin
select_ctl = s_axis.tdest[S_DEST_W-1:S_DEST_W-CL_M_COUNT];
drop_ctl = (CL_M_COUNT+1)'(select_ctl) >= (CL_M_COUNT+1)'(M_COUNT);
end else begin
select_ctl = '0;
drop_ctl = 1'b0;
end
end else begin
select_ctl = select;
drop_ctl = drop || (CL_M_COUNT+1)'(select) >= (CL_M_COUNT+1)'(M_COUNT);
end
frame_ctl = 1'b1;
if (!(s_axis.tready && s_axis.tvalid && s_axis.tlast)) begin
select_next = select_ctl;
drop_next = drop_ctl;
frame_next = 1'b1;
end
end
m_axis_tdata_int = s_axis.tdata;
m_axis_tkeep_int = s_axis.tkeep;
m_axis_tstrb_int = s_axis.tstrb;
m_axis_tvalid_int = '0;
m_axis_tvalid_int[select_ctl] = s_axis.tvalid && s_axis.tready && !drop_ctl;
m_axis_tlast_int = s_axis.tlast;
m_axis_tid_int = s_axis.tid;
m_axis_tdest_int = M_DEST_W'(s_axis.tdest);
m_axis_tuser_int = s_axis.tuser;
end
always_comb begin
s_axis_tready_next = (m_axis_tready_int_early || drop_ctl);
end
always_ff @(posedge clk) begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
select_reg <= '0;
drop_reg <= 1'b0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end
end
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic [M_COUNT-1:0] m_axis_tvalid_reg = '0, m_axis_tvalid_next;
logic m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] m_axis_tid_reg = '0;
logic [M_DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0;
logic [M_COUNT-1:0] temp_m_axis_tvalid_reg = '0, temp_m_axis_tvalid_next;
logic temp_m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] temp_m_axis_tid_reg = '0;
logic [M_DEST_W-1:0] temp_m_axis_tdest_reg = '0;
logic [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
logic store_axis_int_to_output;
logic store_axis_int_to_temp;
logic store_axis_temp_to_output;
wire [M_COUNT-1:0] m_axis_tready;
for (genvar k = 0; k < M_COUNT; k = k + 1) begin
assign m_axis[k].tdata = m_axis_tdata_reg;
assign m_axis[k].tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis[k].tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis[k].tkeep;
assign m_axis[k].tvalid = m_axis_tvalid_reg[k];
assign m_axis[k].tlast = m_axis_tlast_reg;
assign m_axis[k].tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis[k].tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis[k].tuser = USER_EN ? m_axis_tuser_reg : '0;
assign m_axis_tready[k] = m_axis[k].tready;
end
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = (m_axis_tready & m_axis_tvalid_reg) != 0 || (temp_m_axis_tvalid_reg == 0 && (m_axis_tvalid_reg == 0 || m_axis_tvalid_int == 0));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if ((m_axis_tready & m_axis_tvalid_reg) != 0 || m_axis_tvalid_reg == 0) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if ((m_axis_tready & m_axis_tvalid_reg) != 0) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = '0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tstrb_reg <= m_axis_tstrb_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tstrb_reg <= temp_m_axis_tstrb_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tstrb_reg <= m_axis_tstrb_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= '0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= '0;
end
end
endmodule
`resetall