// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 lite interconnect (write) */ module taxi_axil_interconnect_wr # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Address width in bits for address decoding parameter ADDR_W = 32, // Number of regions per master interface parameter M_REGIONS = 1, // TODO fix parametrization once verilator issue 5890 is fixed // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits // set to zero for default addressing based on M_ADDR_W parameter M_BASE_ADDR = '0, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}}, // Write connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}} ) ( input wire logic clk, input wire logic rst, /* * AXI4-lite slave interfaces */ taxi_axil_if.wr_slv s_axil_wr[S_COUNT], /* * AXI4-lite master interfaces */ taxi_axil_if.wr_mst m_axil_wr[M_COUNT] ); // extract parameters localparam DATA_W = s_axil_wr.DATA_W; localparam S_ADDR_W = s_axil_wr.ADDR_W; localparam STRB_W = s_axil_wr.STRB_W; localparam logic AWUSER_EN = s_axil_wr.AWUSER_EN && m_axil_wr.AWUSER_EN; localparam AWUSER_W = s_axil_wr.AWUSER_W; localparam logic WUSER_EN = s_axil_wr.WUSER_EN && m_axil_wr.WUSER_EN; localparam WUSER_W = s_axil_wr.WUSER_W; localparam logic BUSER_EN = s_axil_wr.BUSER_EN && m_axil_wr.BUSER_EN; localparam BUSER_W = s_axil_wr.BUSER_W; localparam CL_S_COUNT = $clog2(S_COUNT); localparam CL_M_COUNT = $clog2(M_COUNT); localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1; localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1; localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W; localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT; localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE; // default address computation function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy); logic [ADDR_W-1:0] base; logic [ADDR_W-1:0] width; logic [ADDR_W-1:0] size; logic [ADDR_W-1:0] mask; begin calcBaseAddrs = '0; base = 0; for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin width = M_ADDR_W_INT[i]; mask = {ADDR_W{1'b1}} >> (ADDR_W - width); size = mask + 1; if (width > 0) begin if ((base & mask) != 0) begin base = base + size - (base & mask); // align end calcBaseAddrs[i] = base; base = base + size; // increment end end end endfunction localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0); // check configuration if (s_axil_wr.ADDR_W != ADDR_W) $fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)"); if (m_axil_wr.DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (m_axil_wr.STRB_W != STRB_W) $fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)"); initial begin for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin /* verilator lint_off UNSIGNED */ if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin $error("Error: address width out of range (instance %m)"); $finish; end /* verilator lint_on UNSIGNED */ end $display("Addressing configuration for axil_interconnect instance %m"); for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_W_INT[i] != 0) begin $display("%2d (%2d): %x / %02d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); end end for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin $display("Region not aligned:"); $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); $error("Error: address range not aligned (instance %m)"); $finish; end end for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j])))) && ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin $display("Overlapping regions:"); $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); $display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j], M_ADDR_W_INT[j], M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]), M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j])) ); $error("Error: address ranges overlap (instance %m)"); $finish; end end end end end localparam logic [2:0] STATE_IDLE = 3'd0, STATE_DECODE = 3'd1, STATE_WRITE = 3'd2, STATE_WRITE_RESP = 3'd3, STATE_WRITE_DROP = 3'd4, STATE_WAIT_IDLE = 3'd5; logic [2:0] state_reg = STATE_IDLE, state_next; logic match; logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next; logic [ADDR_W-1:0] axil_awaddr_reg = '0, axil_awaddr_next; logic axil_awaddr_valid_reg = 1'b0, axil_awaddr_valid_next; logic [2:0] axil_awprot_reg = 3'b000, axil_awprot_next; logic [AWUSER_W-1:0] axil_awuser_reg = '0, axil_awuser_next; logic [DATA_W-1:0] axil_wdata_reg = '0, axil_wdata_next; logic [STRB_W-1:0] axil_wstrb_reg = '0, axil_wstrb_next; logic [WUSER_W-1:0] axil_wuser_reg = '0, axil_wuser_next; logic [1:0] axil_bresp_reg = 2'b00, axil_bresp_next; logic [BUSER_W-1:0] axil_buser_reg = '0, axil_buser_next; logic [S_COUNT-1:0] s_axil_awready_reg = '0, s_axil_awready_next; logic [S_COUNT-1:0] s_axil_wready_reg = '0, s_axil_wready_next; logic [S_COUNT-1:0] s_axil_bvalid_reg = '0, s_axil_bvalid_next; logic [M_COUNT-1:0] m_axil_awvalid_reg = '0, m_axil_awvalid_next; logic [M_COUNT-1:0] m_axil_wvalid_reg = '0, m_axil_wvalid_next; logic [M_COUNT-1:0] m_axil_bready_reg = '0, m_axil_bready_next; // unpack interface array wire [ADDR_W-1:0] s_axil_awaddr[S_COUNT]; wire [2:0] s_axil_awprot[S_COUNT]; wire [AWUSER_W-1:0] s_axil_awuser[S_COUNT]; wire [S_COUNT-1:0] s_axil_awvalid; wire [DATA_W-1:0] s_axil_wdata[S_COUNT]; wire [STRB_W-1:0] s_axil_wstrb[S_COUNT]; wire [WUSER_W-1:0] s_axil_wuser[S_COUNT]; wire [S_COUNT-1:0] s_axil_wvalid; wire [S_COUNT-1:0] s_axil_bready; wire [M_COUNT-1:0] m_axil_awready; wire [M_COUNT-1:0] m_axil_wready; wire [1:0] m_axil_bresp[M_COUNT]; wire [BUSER_W-1:0] m_axil_buser[M_COUNT]; wire [M_COUNT-1:0] m_axil_bvalid; for (genvar n = 0; n < S_COUNT; n = n + 1) begin assign s_axil_awaddr[n] = s_axil_wr[n].awaddr; assign s_axil_awprot[n] = s_axil_wr[n].awprot; assign s_axil_awuser[n] = s_axil_wr[n].awuser; assign s_axil_awvalid[n] = s_axil_wr[n].awvalid; assign s_axil_wr[n].awready = s_axil_awready_reg[n]; assign s_axil_wdata[n] = s_axil_wr[n].wdata; assign s_axil_wstrb[n] = s_axil_wr[n].wstrb; assign s_axil_wuser[n] = s_axil_wr[n].wuser; assign s_axil_wvalid[n] = s_axil_wr[n].wvalid; assign s_axil_wr[n].wready = s_axil_wready_reg[n]; assign s_axil_wr[n].bresp = axil_bresp_reg; assign s_axil_wr[n].buser = BUSER_EN ? axil_buser_reg : '0; assign s_axil_wr[n].bvalid = s_axil_bvalid_reg[n]; assign s_axil_bready[n] = s_axil_wr[n].bready; end for (genvar n = 0; n < M_COUNT; n = n + 1) begin assign m_axil_wr[n].awaddr = axil_awaddr_reg; assign m_axil_wr[n].awprot = axil_awprot_reg; assign m_axil_wr[n].awuser = AWUSER_EN ? axil_awuser_reg : '0; assign m_axil_wr[n].awvalid = m_axil_awvalid_reg[n]; assign m_axil_awready[n] = m_axil_wr[n].awready; assign m_axil_wr[n].wdata = axil_wdata_reg; assign m_axil_wr[n].wstrb = axil_wstrb_reg; assign m_axil_wr[n].wuser = AWUSER_EN ? axil_wuser_reg : '0; assign m_axil_wr[n].wvalid = m_axil_wvalid_reg[n]; assign m_axil_wready[n] = m_axil_wr[n].wready; assign m_axil_bresp[n] = m_axil_wr[n].bresp; assign m_axil_buser[n] = m_axil_wr[n].buser; assign m_axil_bvalid[n] = m_axil_wr[n].bvalid; assign m_axil_wr[n].bready = m_axil_bready_reg[n]; end // slave side mux wire [CL_S_COUNT_INT-1:0] s_select; wire [ADDR_W-1:0] current_s_axil_awaddr = s_axil_awaddr[s_select]; wire [2:0] current_s_axil_awprot = s_axil_awprot[s_select]; wire [AWUSER_W-1:0] current_s_axil_awuser = s_axil_awuser[s_select]; wire current_s_axil_awvalid = s_axil_awvalid[s_select]; wire [DATA_W-1:0] current_s_axil_wdata = s_axil_wdata[s_select]; wire [STRB_W-1:0] current_s_axil_wstrb = s_axil_wstrb[s_select]; wire [WUSER_W-1:0] current_s_axil_wuser = s_axil_wuser[s_select]; wire current_s_axil_wvalid = s_axil_wvalid[s_select]; wire current_s_axil_bready = s_axil_bready[s_select]; // master side mux wire current_m_axil_awready = m_axil_awready[m_select_reg]; wire current_m_axil_wready = m_axil_wready[m_select_reg]; wire [1:0] current_m_axil_bresp = m_axil_bresp[m_select_reg]; wire [BUSER_W-1:0] current_m_axil_buser = m_axil_buser[m_select_reg]; wire current_m_axil_bvalid = m_axil_bvalid[m_select_reg]; // arbiter instance wire [S_COUNT-1:0] req; wire [S_COUNT-1:0] ack; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT_INT-1:0] grant_index; assign s_select = grant_index; if (S_COUNT > 1) begin : arb taxi_arbiter #( .PORTS(S_COUNT), .ARB_ROUND_ROBIN(1), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .LSB_HIGH_PRIO(1) ) arb_inst ( .clk(clk), .rst(rst), .req(req), .ack(ack), .grant(grant), .grant_valid(grant_valid), .grant_index(grant_index) ); end else begin logic grant_valid_reg = 1'b0; always @(posedge clk) begin if (req) begin grant_valid_reg <= 1'b1; end if (ack || rst) begin grant_valid_reg <= 1'b0; end end assign grant_valid = grant_valid_reg; assign grant = '1; assign grant_index = '0; end assign req = s_axil_awvalid; assign ack = grant & s_axil_bvalid_reg & s_axil_bready; always_comb begin state_next = STATE_IDLE; match = 1'b0; m_select_next = m_select_reg; axil_awaddr_next = axil_awaddr_reg; axil_awaddr_valid_next = axil_awaddr_valid_reg; axil_awprot_next = axil_awprot_reg; axil_awuser_next = axil_awuser_reg; axil_wdata_next = axil_wdata_reg; axil_wstrb_next = axil_wstrb_reg; axil_wuser_next = axil_wuser_reg; axil_bresp_next = axil_bresp_reg; axil_buser_next = axil_buser_reg; s_axil_awready_next = '0; s_axil_wready_next = '0; s_axil_bvalid_next = s_axil_bvalid_reg & ~s_axil_bready; m_axil_awvalid_next = m_axil_awvalid_reg & ~m_axil_awready; m_axil_wvalid_next = m_axil_wvalid_reg & ~m_axil_wready; m_axil_bready_next = '0; case (state_reg) STATE_IDLE: begin // idle state; wait for arbitration axil_awaddr_valid_next = 1'b1; axil_awaddr_next = current_s_axil_awaddr; axil_awprot_next = current_s_axil_awprot; axil_awuser_next = current_s_axil_awuser; if (grant_valid) begin s_axil_awready_next[grant_index] = 1'b1; state_next = STATE_DECODE; end else begin state_next = STATE_IDLE; end end STATE_DECODE: begin // decode state; determine master interface match = 1'b0; for (integer i = 0; i < M_COUNT; i = i + 1) begin for (integer j = 0; j < M_REGIONS; j = j + 1) begin if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axil_awprot_reg[1]) && M_CONNECT_INT[i][s_select] && (axil_awaddr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin m_select_next = CL_M_COUNT_INT'(i); match = 1'b1; end end end s_axil_wready_next[s_select] = 1'b1; if (match) begin state_next = STATE_WRITE; end else begin // no match; return decode error state_next = STATE_WRITE_DROP; end end STATE_WRITE: begin // write state; store and forward write data s_axil_wready_next[s_select] = 1'b1; if (axil_awaddr_valid_reg) begin m_axil_awvalid_next[m_select_reg] = 1'b1; end axil_awaddr_valid_next = 1'b0; axil_wdata_next = current_s_axil_wdata; axil_wstrb_next = current_s_axil_wstrb; axil_wuser_next = current_s_axil_wuser; if (s_axil_wready_reg != 0 && current_s_axil_wvalid) begin s_axil_wready_next[s_select] = 1'b0; m_axil_wvalid_next[m_select_reg] = 1'b1; m_axil_bready_next[m_select_reg] = 1'b1; state_next = STATE_WRITE_RESP; end else begin state_next = STATE_WRITE; end end STATE_WRITE_RESP: begin // write response state; store and forward write response m_axil_bready_next[m_select_reg] = 1'b1; axil_bresp_next = current_m_axil_bresp; axil_buser_next = current_m_axil_buser; if (m_axil_bready_reg != 0 && current_m_axil_bvalid) begin m_axil_bready_next[m_select_reg] = 1'b0; s_axil_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_RESP; end end STATE_WRITE_DROP: begin // write drop state; drop write data s_axil_wready_next[s_select] = 1'b1; axil_awaddr_valid_next = 1'b0; axil_bresp_next = 2'b11; axil_buser_next = '0; if (s_axil_wready_reg != 0 && current_s_axil_wvalid) begin s_axil_wready_next[s_select] = 1'b0; s_axil_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_DROP; end end STATE_WAIT_IDLE: begin // wait for idle state; wait until grant valid is deasserted if (grant_valid == 0 || ack != 0) begin state_next = STATE_IDLE; end else begin state_next = STATE_WAIT_IDLE; end end default: begin // invalid state state_next = STATE_IDLE; end endcase end always_ff @(posedge clk) begin state_reg <= state_next; m_select_reg <= m_select_next; axil_awaddr_reg <= axil_awaddr_next; axil_awaddr_valid_reg <= axil_awaddr_valid_next; axil_awprot_reg <= axil_awprot_next; axil_awuser_reg <= axil_awuser_next; axil_wdata_reg <= axil_wdata_next; axil_wstrb_reg <= axil_wstrb_next; axil_wuser_reg <= axil_wuser_next; axil_bresp_reg <= axil_bresp_next; axil_buser_reg <= axil_buser_next; s_axil_awready_reg <= s_axil_awready_next; s_axil_wready_reg <= s_axil_wready_next; s_axil_bvalid_reg <= s_axil_bvalid_next; m_axil_awvalid_reg <= m_axil_awvalid_next; m_axil_wvalid_reg <= m_axil_wvalid_next; m_axil_bready_reg <= m_axil_bready_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_awready_reg <= '0; s_axil_wready_reg <= '0; s_axil_bvalid_reg <= '0; m_axil_awvalid_reg <= '0; m_axil_wvalid_reg <= '0; m_axil_bready_reg <= '0; end end endmodule `resetall