// SPDX-License-Identifier: MIT /* Copyright (c) 2014-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * FPGA top-level module */ module fpga # ( // simulation (set to avoid vendor primitives) parameter logic SIM = 1'b0, // vendor ("GENERIC", "XILINX", "ALTERA") parameter string VENDOR = "XILINX", // device family parameter string FAMILY = "kintex7", // Use 90 degree clock for RGMII transmit parameter logic USE_CLK90 = 1'b1, // BASE-T PHY type (GMII, RGMII) parameter BASET_PHY_TYPE = "GMII", // SFP rate selection (0 for 1G, 1 for 10G) parameter logic SFP_RATE = 1'b1, // Invert SFP data pins parameter logic SFP_INVERT = 1'b1, // 10G MAC configuration parameter logic CFG_LOW_LATENCY = 1'b1, parameter logic COMBINED_MAC_PCS = 1'b1 ) ( /* * Clock: 200MHz * Reset: Push button, active high */ input wire logic clk_200mhz_p, input wire logic clk_200mhz_n, input wire logic reset, /* * GPIO */ input wire logic btnu, input wire logic btnl, input wire logic btnd, input wire logic btnr, input wire logic btnc, input wire logic [3:0] sw, output wire logic [7:0] led, /* * UART: 115200 bps, 8N1 */ input wire logic uart_rxd, output wire logic uart_txd, input wire logic uart_rts, output wire logic uart_cts, /* * I2C */ inout wire logic i2c_scl, inout wire logic i2c_sda, output wire logic i2c_mux_reset, /* * Ethernet: SFP+ */ input wire logic sfp_rx_p, input wire logic sfp_rx_n, output wire logic sfp_tx_p, output wire logic sfp_tx_n, input wire logic sfp_mgt_refclk_p, input wire logic sfp_mgt_refclk_n, output wire logic si5324_rst, input wire logic si5324_int, output wire logic sfp_tx_disable_b, /* * Ethernet: 1000BASE-T GMII or RGMII */ input wire logic phy_rx_clk, input wire logic [7:0] phy_rxd, input wire logic phy_rx_dv, input wire logic phy_rx_er, output wire logic phy_gtx_clk, input wire logic phy_tx_clk, output wire logic [7:0] phy_txd, output wire logic phy_tx_en, output wire logic phy_tx_er, output wire logic phy_reset_n, input wire logic phy_int_n ); // Clock and reset wire clk_200mhz_ibufg; // Internal 125 MHz clock wire clk_mmcm_out; wire clk_int; wire clk90_mmcm_out; wire clk90_int; wire rst_int; wire clk_200mhz_mmcm_out; wire clk_200mhz_int; wire mmcm_rst = reset; wire mmcm_locked; wire mmcm_clkfb; IBUFGDS clk_200mhz_ibufgds_inst( .I(clk_200mhz_p), .IB(clk_200mhz_n), .O(clk_200mhz_ibufg) ); // MMCM instance MMCME2_BASE #( // 200 MHz input .CLKIN1_PERIOD(5.0), .REF_JITTER1(0.010), // 200 MHz input / 1 = 200 MHz PFD (range 10 MHz to 500 MHz) .DIVCLK_DIVIDE(1), // 200 MHz PFD * 5 = 1000 MHz VCO (range 600 MHz to 1440 MHz) .CLKFBOUT_MULT_F(5), .CLKFBOUT_PHASE(0), // 1000 MHz VCO / 8 = 125 MHz, 0 degrees .CLKOUT0_DIVIDE_F(8), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), // 1000 MHz VCO / 8 = 125 MHz, 90 degrees .CLKOUT1_DIVIDE(8), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(90), // 1000 MHz VCO / 5 = 200 MHz, 0 degrees .CLKOUT2_DIVIDE(5), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), // Not used .CLKOUT3_DIVIDE(1), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), // Not used .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT4_CASCADE("FALSE"), // Not used .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), // Not used .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), // optimized bandwidth .BANDWIDTH("OPTIMIZED"), // don't wait for lock during startup .STARTUP_WAIT("FALSE") ) clk_mmcm_inst ( // 200 MHz input .CLKIN1(clk_200mhz_ibufg), // direct clkfb feeback .CLKFBIN(mmcm_clkfb), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), // 125 MHz, 0 degrees .CLKOUT0(clk_mmcm_out), .CLKOUT0B(), // 125 MHz, 90 degrees .CLKOUT1(clk90_mmcm_out), .CLKOUT1B(), // 200 MHz, 0 degrees .CLKOUT2(clk_200mhz_mmcm_out), .CLKOUT2B(), // Not used .CLKOUT3(), .CLKOUT3B(), // Not used .CLKOUT4(), // Not used .CLKOUT5(), // Not used .CLKOUT6(), // reset input .RST(mmcm_rst), // don't power down .PWRDWN(1'b0), // locked output .LOCKED(mmcm_locked) ); BUFG clk_bufg_inst ( .I(clk_mmcm_out), .O(clk_int) ); BUFG clk90_bufg_inst ( .I(clk90_mmcm_out), .O(clk90_int) ); BUFG clk_200mhz_bufg_inst ( .I(clk_200mhz_mmcm_out), .O(clk_200mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_inst ( .clk(clk_int), .rst(~mmcm_locked), .out(rst_int) ); // GPIO wire btnu_int; wire btnl_int; wire btnd_int; wire btnr_int; wire btnc_int; wire [3:0] sw_int; taxi_debounce_switch #( .WIDTH(9), .N(4), .RATE(125000) ) debounce_switch_inst ( .clk(clk_int), .rst(rst_int), .in({btnu, btnl, btnd, btnr, btnc, sw}), .out({btnu_int, btnl_int, btnd_int, btnr_int, btnc_int, sw_int}) ); wire uart_rxd_int; wire uart_rts_int; taxi_sync_signal #( .WIDTH(2), .N(2) ) sync_signal_inst ( .clk(clk_int), .in({uart_rxd, uart_rts}), .out({uart_rxd_int, uart_rts_int}) ); // I2C wire i2c_scl_i; wire i2c_scl_o; wire i2c_sda_i; wire i2c_sda_o; assign i2c_scl_i = i2c_scl; assign i2c_scl = i2c_scl_o ? 1'bz : 1'b0; assign i2c_sda_i = i2c_sda; assign i2c_sda = i2c_sda_o ? 1'bz : 1'b0; wire i2c_init_scl_i = i2c_scl_i; wire i2c_init_scl_o; wire i2c_init_sda_i = i2c_sda_i; wire i2c_init_sda_o; wire i2c_int_scl_i = i2c_scl_i; wire i2c_int_scl_o; wire i2c_int_sda_i = i2c_sda_i; wire i2c_int_sda_o; assign i2c_scl_o = i2c_init_scl_o & i2c_int_scl_o; assign i2c_sda_o = i2c_init_sda_o & i2c_int_sda_o; // Si5324 init taxi_axis_if #(.DATA_W(12)) si5324_i2c_cmd(); taxi_axis_if #(.DATA_W(8)) si5324_i2c_tx(); taxi_axis_if #(.DATA_W(8)) si5324_i2c_rx(); assign si5324_i2c_rx.tready = 1'b1; wire si5324_i2c_busy; assign si5324_rst = ~rst_int; taxi_i2c_master si5324_i2c_master_inst ( .clk(clk_int), .rst(rst_int), /* * Host interface */ .s_axis_cmd(si5324_i2c_cmd), .s_axis_tx(si5324_i2c_tx), .m_axis_rx(si5324_i2c_rx), /* * I2C interface */ .scl_i(i2c_init_scl_i), .scl_o(i2c_init_scl_o), .sda_i(i2c_init_sda_i), .sda_o(i2c_init_sda_o), /* * Status */ .busy(), .bus_control(), .bus_active(), .missed_ack(), /* * Configuration */ .prescale(SIM ? 32 : 312), .stop_on_idle(1) ); si5324_i2c_init #( .SIM_SPEEDUP(SIM) ) si5324_i2c_init_inst ( .clk(clk_int), .rst(rst_int), /* * I2C master interface */ .m_axis_cmd(si5324_i2c_cmd), .m_axis_tx(si5324_i2c_tx), /* * Status */ .busy(si5324_i2c_busy), /* * Configuration */ .start(1'b1) ); wire phy_rgmii_rx_clk_int; wire [3:0] phy_rgmii_rxd_int; wire phy_rgmii_rx_ctl_int; wire phy_rgmii_tx_clk_int; wire [3:0] phy_rgmii_txd_int; wire phy_rgmii_tx_ctl_int; wire phy_gmii_rx_clk_int; wire [7:0] phy_gmii_rxd_int; wire phy_gmii_rx_dv_int; wire phy_gmii_rx_er_int; wire phy_gmii_gtx_clk_int; wire phy_gmii_tx_clk_int; wire [7:0] phy_gmii_txd_int; wire phy_gmii_tx_en_int; wire phy_gmii_tx_er_int; if (BASET_PHY_TYPE == "RGMII") begin : phy_if assign phy_rgmii_rx_clk_int = phy_rx_clk; // IODELAY elements for RGMII interface to PHY IDELAYCTRL idelayctrl_inst ( .REFCLK(clk_200mhz_int), .RST(rst_int), .RDY() ); for (genvar n = 0; n < 4; n = n + 1) begin : phy_rxd_idelay_bit IDELAYE2 #( .IDELAY_TYPE("FIXED") ) idelay_inst ( .IDATAIN(phy_rxd[n]), .DATAOUT(phy_rgmii_rxd_int[n]), .DATAIN(1'b0), .C(1'b0), .CE(1'b0), .INC(1'b0), .CINVCTRL(1'b0), .CNTVALUEIN(5'd0), .CNTVALUEOUT(), .LD(1'b0), .LDPIPEEN(1'b0), .REGRST(1'b0) ); end IDELAYE2 #( .IDELAY_TYPE("FIXED") ) phy_rx_ctl_idelay ( .IDATAIN(phy_rx_dv), .DATAOUT(phy_rgmii_rx_ctl_int), .DATAIN(1'b0), .C(1'b0), .CE(1'b0), .INC(1'b0), .CINVCTRL(1'b0), .CNTVALUEIN(5'd0), .CNTVALUEOUT(), .LD(1'b0), .LDPIPEEN(1'b0), .REGRST(1'b0) ); assign phy_gtx_clk = phy_rgmii_tx_clk_int; assign phy_txd[3:0] = phy_rgmii_txd_int; assign phy_tx_en = phy_rgmii_tx_ctl_int; assign phy_txd[7:4] = '0; assign phy_tx_er = 1'b0; assign phy_gmii_rx_clk_int = 1'b0; assign phy_gmii_rxd_int = '0; assign phy_gmii_rx_dv_int = 1'b0; assign phy_gmii_rx_er_int = 1'b0; assign phy_gmii_tx_clk_int = 1'b0; end else begin : phy_if assign phy_rgmii_rx_clk_int = 1'b0; assign phy_rgmii_rxd_int = '0; assign phy_rgmii_rx_ctl_int = 1'b0; assign phy_gmii_rx_clk_int = phy_rx_clk; assign phy_gmii_rxd_int = phy_rxd; assign phy_gmii_rx_dv_int = phy_rx_dv; assign phy_gmii_rx_er_int = phy_rx_er; assign phy_gtx_clk = phy_gmii_gtx_clk_int; assign phy_gmii_tx_clk_int = phy_tx_clk; assign phy_txd = phy_gmii_txd_int; assign phy_tx_en = phy_gmii_tx_en_int; assign phy_tx_er = phy_gmii_tx_er_int; end fpga_core #( .SIM(SIM), .VENDOR(VENDOR), .FAMILY(FAMILY), .USE_CLK90(USE_CLK90), .BASET_PHY_TYPE(BASET_PHY_TYPE), .SFP_INVERT(SFP_INVERT), .CFG_LOW_LATENCY(CFG_LOW_LATENCY), .COMBINED_MAC_PCS(COMBINED_MAC_PCS) ) core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk(clk_int), .clk90(clk90_int), .rst(rst_int), /* * GPIO */ .btnu(btnu_int), .btnl(btnl_int), .btnd(btnd_int), .btnr(btnr_int), .btnc(btnc_int), .sw(sw_int), .led(led), /* * UART: 115200 bps, 8N1 */ .uart_rxd(uart_rxd_int), .uart_txd(uart_txd), .uart_rts(uart_rts_int), .uart_cts(uart_cts), /* * I2C */ .i2c_scl_i(i2c_int_scl_i), .i2c_scl_o(i2c_int_scl_o), .i2c_sda_i(i2c_int_sda_i), .i2c_sda_o(i2c_int_sda_o), /* * Ethernet: SFP+ */ .sfp_rx_p(sfp_rx_p), .sfp_rx_n(sfp_rx_n), .sfp_tx_p(sfp_tx_p), .sfp_tx_n(sfp_tx_n), .sfp_mgt_refclk_p(sfp_mgt_refclk_p), .sfp_mgt_refclk_n(sfp_mgt_refclk_n), .sfp_tx_disable_b(sfp_tx_disable_b), /* * Ethernet: 1000BASE-T GMII/RGMII/SGMII */ .phy_rgmii_rx_clk(phy_rgmii_rx_clk_int), .phy_rgmii_rxd(phy_rgmii_rxd_int), .phy_rgmii_rx_ctl(phy_rgmii_rx_ctl_int), .phy_rgmii_tx_clk(phy_rgmii_tx_clk_int), .phy_rgmii_txd(phy_rgmii_txd_int), .phy_rgmii_tx_ctl(phy_rgmii_tx_ctl_int), .phy_gmii_rx_clk(phy_gmii_rx_clk_int), .phy_gmii_rxd(phy_gmii_rxd_int), .phy_gmii_rx_dv(phy_gmii_rx_dv_int), .phy_gmii_rx_er(phy_gmii_rx_er_int), .phy_gmii_gtx_clk(phy_gmii_gtx_clk_int), .phy_gmii_tx_clk(phy_gmii_tx_clk_int), .phy_gmii_txd(phy_gmii_txd_int), .phy_gmii_tx_en(phy_gmii_tx_en_int), .phy_gmii_tx_er(phy_gmii_tx_er_int), .phy_reset_n(phy_reset_n), .phy_int_n(phy_int_n) ); endmodule `resetall