// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 width adapter */ module taxi_axi_adapter_wr # ( // When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible parameter logic CONVERT_BURST = 1'b1, // When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible parameter logic CONVERT_NARROW_BURST = 1'b0 ) ( input wire logic clk, input wire logic rst, /* * AXI4 slave interface */ taxi_axi_if.wr_slv s_axi_wr, /* * AXI4 master interface */ taxi_axi_if.wr_mst m_axi_wr ); // extract parameters localparam S_DATA_W = s_axi_wr.DATA_W; localparam ADDR_W = s_axi_wr.ADDR_W; localparam CL_ADDR_W = $clog2(ADDR_W); localparam S_STRB_W = s_axi_wr.STRB_W; localparam ID_W = s_axi_wr.ID_W; localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN; localparam AWUSER_W = s_axi_wr.AWUSER_W; localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN; localparam WUSER_W = s_axi_wr.WUSER_W; localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN; localparam BUSER_W = s_axi_wr.BUSER_W; localparam M_DATA_W = m_axi_wr.DATA_W; localparam M_STRB_W = m_axi_wr.STRB_W; localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W); localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W); localparam S_BYTE_LANES = S_STRB_W; localparam M_BYTE_LANES = M_STRB_W; localparam S_BYTE_SIZE = S_DATA_W/S_BYTE_LANES; localparam M_BYTE_SIZE = M_DATA_W/M_BYTE_LANES; localparam logic [2:0] S_BURST_SIZE = 3'($clog2(S_STRB_W)); localparam logic [2:0] M_BURST_SIZE = 3'($clog2(M_STRB_W)); // check configuration if (S_BYTE_SIZE * S_STRB_W != S_DATA_W) $fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)"); if (M_BYTE_SIZE * M_STRB_W != M_DATA_W) $fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)"); if (S_BYTE_SIZE != M_BYTE_SIZE) $fatal(0, "Error: byte size mismatch (instance %m)"); if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES) $fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)"); if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES) $fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)"); if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass // same width; bypass assign m_axi_wr.awid = s_axi_wr.awid; assign m_axi_wr.awaddr = s_axi_wr.awaddr; assign m_axi_wr.awlen = s_axi_wr.awlen; assign m_axi_wr.awsize = s_axi_wr.awsize; assign m_axi_wr.awburst = s_axi_wr.awburst; assign m_axi_wr.awlock = s_axi_wr.awlock; assign m_axi_wr.awcache = s_axi_wr.awcache; assign m_axi_wr.awprot = s_axi_wr.awprot; assign m_axi_wr.awqos = s_axi_wr.awqos; assign m_axi_wr.awregion = s_axi_wr.awregion; assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0; assign m_axi_wr.awvalid = s_axi_wr.awvalid; assign s_axi_wr.awready = m_axi_wr.awready; assign m_axi_wr.wdata = s_axi_wr.wdata; assign m_axi_wr.wstrb = s_axi_wr.wstrb; assign m_axi_wr.wlast = s_axi_wr.wlast; assign m_axi_wr.wuser = WUSER_EN ? s_axi_wr.wuser : '0; assign m_axi_wr.wvalid = s_axi_wr.wvalid; assign s_axi_wr.wready = m_axi_wr.wready; assign s_axi_wr.bid = m_axi_wr.bid; assign s_axi_wr.bresp = m_axi_wr.bresp; assign s_axi_wr.buser = BUSER_EN ? m_axi_wr.buser : '0; assign s_axi_wr.bvalid = m_axi_wr.bvalid; assign m_axi_wr.bready = s_axi_wr.bready; end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize // output is wider; upsize // output bus is wider localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES; localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W; localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES); localparam CL_SEG_COUNT = $clog2(SEG_COUNT); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_DATA_2 = 2'd2, STATE_RESP = 2'd3; logic [1:0] state_reg = STATE_IDLE, state_next; logic [ID_W-1:0] id_reg = '0, id_next; logic [ADDR_W-1:0] addr_reg = '0, addr_next; logic [DATA_W-1:0] data_reg = '0, data_next; logic [STRB_W-1:0] strb_reg = '0, strb_next; logic [WUSER_W-1:0] wuser_reg = '0, wuser_next; logic [7:0] burst_reg = '0, burst_next; logic [2:0] burst_size_reg = '0, burst_size_next; logic [2:0] master_burst_size_reg = '0, master_burst_size_next; logic burst_active_reg = 1'b0, burst_active_next; logic first_transfer_reg = 1'b0, first_transfer_next; logic s_axi_awready_reg = 1'b0, s_axi_awready_next; logic s_axi_wready_reg = 1'b0, s_axi_wready_next; logic [ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next; logic [1:0] s_axi_bresp_reg = '0, s_axi_bresp_next; logic [BUSER_W-1:0] s_axi_buser_reg = '0, s_axi_buser_next; logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; logic [ID_W-1:0] m_axi_awid_reg = '0, m_axi_awid_next; logic [ADDR_W-1:0] m_axi_awaddr_reg = '0, m_axi_awaddr_next; logic [7:0] m_axi_awlen_reg = '0, m_axi_awlen_next; logic [2:0] m_axi_awsize_reg = '0, m_axi_awsize_next; logic [1:0] m_axi_awburst_reg = '0, m_axi_awburst_next; logic m_axi_awlock_reg = '0, m_axi_awlock_next; logic [3:0] m_axi_awcache_reg = '0, m_axi_awcache_next; logic [2:0] m_axi_awprot_reg = '0, m_axi_awprot_next; logic [3:0] m_axi_awqos_reg = '0, m_axi_awqos_next; logic [3:0] m_axi_awregion_reg = '0, m_axi_awregion_next; logic [AWUSER_W-1:0] m_axi_awuser_reg = '0, m_axi_awuser_next; logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; logic m_axi_bready_reg = 1'b0, m_axi_bready_next; // internal datapath logic [M_DATA_W-1:0] m_axi_wdata_int; logic [M_STRB_W-1:0] m_axi_wstrb_int; logic m_axi_wlast_int; logic [WUSER_W-1:0] m_axi_wuser_int; logic m_axi_wvalid_int; logic m_axi_wready_int_reg = 1'b0; wire m_axi_wready_int_early; assign s_axi_wr.awready = s_axi_awready_reg; assign s_axi_wr.wready = s_axi_wready_reg; assign s_axi_wr.bid = s_axi_bid_reg; assign s_axi_wr.bresp = s_axi_bresp_reg; assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0; assign s_axi_wr.bvalid = s_axi_bvalid_reg; assign m_axi_wr.awid = '0; assign m_axi_wr.awaddr = m_axi_awaddr_reg; assign m_axi_wr.awlen = m_axi_awlen_reg; assign m_axi_wr.awsize = m_axi_awsize_reg; assign m_axi_wr.awburst = m_axi_awburst_reg; assign m_axi_wr.awlock = m_axi_awlock_reg; assign m_axi_wr.awcache = m_axi_awcache_reg; assign m_axi_wr.awprot = m_axi_awprot_reg; assign m_axi_wr.awqos = m_axi_awqos_reg; assign m_axi_wr.awregion = m_axi_awregion_reg; assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0; assign m_axi_wr.awvalid = m_axi_awvalid_reg; assign m_axi_wr.bready = m_axi_bready_reg; always_comb begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; strb_next = strb_reg; wuser_next = wuser_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_size_next = master_burst_size_reg; burst_active_next = burst_active_reg; first_transfer_next = first_transfer_reg; s_axi_awready_next = 1'b0; s_axi_wready_next = 1'b0; s_axi_bid_next = s_axi_bid_reg; s_axi_bresp_next = s_axi_bresp_reg; s_axi_buser_next = s_axi_buser_reg; s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready; m_axi_awid_next = m_axi_awid_reg; m_axi_awaddr_next = m_axi_awaddr_reg; m_axi_awlen_next = m_axi_awlen_reg; m_axi_awsize_next = m_axi_awsize_reg; m_axi_awburst_next = m_axi_awburst_reg; m_axi_awlock_next = m_axi_awlock_reg; m_axi_awcache_next = m_axi_awcache_reg; m_axi_awprot_next = m_axi_awprot_reg; m_axi_awqos_next = m_axi_awqos_reg; m_axi_awregion_next = m_axi_awregion_reg; m_axi_awuser_next = m_axi_awuser_reg; m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_wr.awready; m_axi_bready_next = 1'b0; m_axi_wdata_int = {(M_BYTE_LANES/S_BYTE_LANES){s_axi_wr.wdata}}; m_axi_wstrb_int = 0; m_axi_wstrb_int[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axi_wr.wstrb; m_axi_wlast_int = s_axi_wr.wlast; m_axi_wuser_int = s_axi_wr.wuser; m_axi_wvalid_int = 1'b0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_awready_next = !m_axi_wr.awvalid; strb_next = '0; if (s_axi_wr.awready && s_axi_wr.awvalid) begin s_axi_awready_next = 1'b0; id_next = s_axi_wr.awid; m_axi_awid_next = s_axi_wr.awid; m_axi_awaddr_next = s_axi_wr.awaddr; addr_next = s_axi_wr.awaddr; burst_next = s_axi_wr.awlen; burst_size_next = s_axi_wr.awsize; if (CONVERT_BURST && s_axi_wr.awcache[1] && (CONVERT_NARROW_BURST || s_axi_wr.awsize == S_BURST_SIZE)) begin // merge writes // require CONVERT_BURST and awcache[1] set master_burst_size_next = M_BURST_SIZE; if (CONVERT_NARROW_BURST) begin m_axi_awlen_next = 8'((({8'd0, s_axi_wr.awlen} << s_axi_wr.awsize) + 16'(s_axi_wr.awaddr[M_ADDR_BIT_OFFSET-1:0])) >> M_BURST_SIZE); end else begin m_axi_awlen_next = (s_axi_wr.awlen + 8'(s_axi_wr.awaddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET])) >> CL_SEG_COUNT; end m_axi_awsize_next = M_BURST_SIZE; state_next = STATE_DATA_2; end else begin // output narrow burst master_burst_size_next = s_axi_wr.awsize; m_axi_awlen_next = s_axi_wr.awlen; m_axi_awsize_next = s_axi_wr.awsize; state_next = STATE_DATA; end m_axi_awburst_next = s_axi_wr.awburst; m_axi_awlock_next = s_axi_wr.awlock; m_axi_awcache_next = s_axi_wr.awcache; m_axi_awprot_next = s_axi_wr.awprot; m_axi_awqos_next = s_axi_wr.awqos; m_axi_awregion_next = s_axi_wr.awregion; m_axi_awuser_next = s_axi_wr.awuser; m_axi_awvalid_next = 1'b1; s_axi_wready_next = m_axi_wready_int_early; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin // data state; transfer write data s_axi_wready_next = m_axi_wready_int_early; if (s_axi_wr.wready && s_axi_wr.wvalid) begin m_axi_wdata_int = {(M_BYTE_LANES/S_BYTE_LANES){s_axi_wr.wdata}}; m_axi_wstrb_int = 0; m_axi_wstrb_int[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axi_wr.wstrb; m_axi_wlast_int = s_axi_wr.wlast; m_axi_wuser_int = s_axi_wr.wuser; m_axi_wvalid_int = 1'b1; addr_next = addr_reg + (1 << burst_size_reg); if (s_axi_wr.wlast) begin s_axi_wready_next = 1'b0; m_axi_bready_next = !s_axi_wr.bvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end STATE_DATA_2: begin s_axi_wready_next = m_axi_wready_int_early; if (s_axi_wr.wready && s_axi_wr.wvalid) begin if (CONVERT_NARROW_BURST) begin for (integer i = 0; i < S_BYTE_LANES; i = i + 1) begin if (s_axi_wr.wstrb[i]) begin data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_DATA_W+i*M_BYTE_SIZE +: M_BYTE_SIZE] = s_axi_wr.wdata[i*M_BYTE_SIZE +: M_BYTE_SIZE]; strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_STRB_W+i] = 1'b1; end end end else begin data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = s_axi_wr.wdata; strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_STRB_W +: SEG_STRB_W] = s_axi_wr.wstrb; end m_axi_wdata_int = data_next; m_axi_wstrb_int = strb_next; m_axi_wlast_int = s_axi_wr.wlast; m_axi_wuser_int = s_axi_wr.wuser; burst_next = burst_reg - 1; addr_next = addr_reg + (1 << burst_size_reg); if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin strb_next = '0; m_axi_wvalid_int = 1'b1; end if (burst_reg == 0) begin m_axi_wvalid_int = 1'b1; s_axi_wready_next = 1'b0; m_axi_bready_next = !s_axi_wr.bvalid; state_next = STATE_RESP; end else begin state_next = STATE_DATA_2; end end else begin state_next = STATE_DATA_2; end end STATE_RESP: begin // resp state; transfer write response m_axi_bready_next = !s_axi_wr.bvalid; if (m_axi_wr.bready && m_axi_wr.bvalid) begin m_axi_bready_next = 1'b0; s_axi_bid_next = id_reg; s_axi_bresp_next = m_axi_wr.bresp; s_axi_buser_next = m_axi_wr.buser; s_axi_bvalid_next = 1'b1; s_axi_awready_next = !m_axi_wr.awvalid; state_next = STATE_IDLE; end else begin state_next = STATE_RESP; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; strb_reg <= strb_next; wuser_reg <= wuser_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_size_reg <= master_burst_size_next; burst_active_reg <= burst_active_next; first_transfer_reg <= first_transfer_next; s_axi_awready_reg <= s_axi_awready_next; s_axi_wready_reg <= s_axi_wready_next; s_axi_bid_reg <= s_axi_bid_next; s_axi_bresp_reg <= s_axi_bresp_next; s_axi_buser_reg <= s_axi_buser_next; s_axi_bvalid_reg <= s_axi_bvalid_next; m_axi_awid_reg <= m_axi_awid_next; m_axi_awaddr_reg <= m_axi_awaddr_next; m_axi_awlen_reg <= m_axi_awlen_next; m_axi_awsize_reg <= m_axi_awsize_next; m_axi_awburst_reg <= m_axi_awburst_next; m_axi_awlock_reg <= m_axi_awlock_next; m_axi_awcache_reg <= m_axi_awcache_next; m_axi_awprot_reg <= m_axi_awprot_next; m_axi_awqos_reg <= m_axi_awqos_next; m_axi_awregion_reg <= m_axi_awregion_next; m_axi_awuser_reg <= m_axi_awuser_next; m_axi_awvalid_reg <= m_axi_awvalid_next; m_axi_bready_reg <= m_axi_bready_next; if (rst) begin state_reg <= STATE_IDLE; s_axi_awready_reg <= 1'b0; s_axi_wready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; m_axi_awvalid_reg <= 1'b0; m_axi_bready_reg <= 1'b0; end end // output datapath logic logic [M_DATA_W-1:0] m_axi_wdata_reg = '0; logic [M_STRB_W-1:0] m_axi_wstrb_reg = '0; logic m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0; logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; logic [M_DATA_W-1:0] temp_m_axi_wdata_reg = '0; logic [M_STRB_W-1:0] temp_m_axi_wstrb_reg = '0; logic temp_m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0; logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next; // datapath control logic store_axi_w_int_to_output; logic store_axi_w_int_to_temp; logic store_axi_w_temp_to_output; assign m_axi_wr.wdata = m_axi_wdata_reg; assign m_axi_wr.wstrb = m_axi_wstrb_reg; assign m_axi_wr.wlast = m_axi_wlast_reg; assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0; assign m_axi_wr.wvalid = m_axi_wvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axi_wready_int_early = m_axi_wr.wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int)); always_comb begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg; store_axi_w_int_to_output = 1'b0; store_axi_w_int_to_temp = 1'b0; store_axi_w_temp_to_output = 1'b0; if (m_axi_wready_int_reg) begin // input is ready if (m_axi_wr.wready | ~m_axi_wvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_temp = 1'b1; end end else if (m_axi_wr.wready) begin // input is not ready, but output is ready m_axi_wvalid_next = temp_m_axi_wvalid_reg; temp_m_axi_wvalid_next = 1'b0; store_axi_w_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin if (rst) begin m_axi_wvalid_reg <= 1'b0; m_axi_wready_int_reg <= 1'b0; temp_m_axi_wvalid_reg <= 1'b0; end else begin m_axi_wvalid_reg <= m_axi_wvalid_next; m_axi_wready_int_reg <= m_axi_wready_int_early; temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next; end // datapath if (store_axi_w_int_to_output) begin m_axi_wdata_reg <= m_axi_wdata_int; m_axi_wstrb_reg <= m_axi_wstrb_int; m_axi_wlast_reg <= m_axi_wlast_int; m_axi_wuser_reg <= m_axi_wuser_int; end else if (store_axi_w_temp_to_output) begin m_axi_wdata_reg <= temp_m_axi_wdata_reg; m_axi_wstrb_reg <= temp_m_axi_wstrb_reg; m_axi_wlast_reg <= temp_m_axi_wlast_reg; m_axi_wuser_reg <= temp_m_axi_wuser_reg; end if (store_axi_w_int_to_temp) begin temp_m_axi_wdata_reg <= m_axi_wdata_int; temp_m_axi_wstrb_reg <= m_axi_wstrb_int; temp_m_axi_wlast_reg <= m_axi_wlast_int; temp_m_axi_wuser_reg <= m_axi_wuser_int; end end end else begin : downsize // output is narrower; downsize // output bus is wider localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES; localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W; localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_DATA_2 = 2'd2, STATE_RESP = 2'd3; logic [1:0] state_reg = STATE_IDLE, state_next; logic [ID_W-1:0] id_reg = '0, id_next; logic [ADDR_W-1:0] addr_reg = '0, addr_next; logic [DATA_W-1:0] data_reg = '0, data_next; logic [STRB_W-1:0] strb_reg = '0, strb_next; logic [WUSER_W-1:0] wuser_reg = '0, wuser_next; logic [7:0] burst_reg = '0, burst_next; logic [2:0] burst_size_reg = '0, burst_size_next; logic [7:0] master_burst_reg = '0, master_burst_next; logic [2:0] master_burst_size_reg = '0, master_burst_size_next; logic burst_active_reg = 1'b0, burst_active_next; logic first_transfer_reg = 1'b0, first_transfer_next; logic s_axi_awready_reg = 1'b0, s_axi_awready_next; logic s_axi_wready_reg = 1'b0, s_axi_wready_next; logic [ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next; logic [1:0] s_axi_bresp_reg = '0, s_axi_bresp_next; logic [BUSER_W-1:0] s_axi_buser_reg = '0, s_axi_buser_next; logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; logic [ID_W-1:0] m_axi_awid_reg = '0, m_axi_awid_next; logic [ADDR_W-1:0] m_axi_awaddr_reg = '0, m_axi_awaddr_next; logic [7:0] m_axi_awlen_reg = '0, m_axi_awlen_next; logic [2:0] m_axi_awsize_reg = '0, m_axi_awsize_next; logic [1:0] m_axi_awburst_reg = '0, m_axi_awburst_next; logic m_axi_awlock_reg = '0, m_axi_awlock_next; logic [3:0] m_axi_awcache_reg = '0, m_axi_awcache_next; logic [2:0] m_axi_awprot_reg = '0, m_axi_awprot_next; logic [3:0] m_axi_awqos_reg = '0, m_axi_awqos_next; logic [3:0] m_axi_awregion_reg = '0, m_axi_awregion_next; logic [AWUSER_W-1:0] m_axi_awuser_reg = '0, m_axi_awuser_next; logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; logic m_axi_bready_reg = 1'b0, m_axi_bready_next; // internal datapath logic [M_DATA_W-1:0] m_axi_wdata_int; logic [M_STRB_W-1:0] m_axi_wstrb_int; logic m_axi_wlast_int; logic [WUSER_W-1:0] m_axi_wuser_int; logic m_axi_wvalid_int; logic m_axi_wready_int_reg = 1'b0; wire m_axi_wready_int_early; assign s_axi_wr.awready = s_axi_awready_reg; assign s_axi_wr.wready = s_axi_wready_reg; assign s_axi_wr.bid = s_axi_bid_reg; assign s_axi_wr.bresp = s_axi_bresp_reg; assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0; assign s_axi_wr.bvalid = s_axi_bvalid_reg; assign m_axi_wr.awid = '0; assign m_axi_wr.awaddr = m_axi_awaddr_reg; assign m_axi_wr.awlen = m_axi_awlen_reg; assign m_axi_wr.awsize = m_axi_awsize_reg; assign m_axi_wr.awburst = m_axi_awburst_reg; assign m_axi_wr.awlock = m_axi_awlock_reg; assign m_axi_wr.awcache = m_axi_awcache_reg; assign m_axi_wr.awprot = m_axi_awprot_reg; assign m_axi_wr.awqos = m_axi_awqos_reg; assign m_axi_wr.awregion = m_axi_awregion_reg; assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0; assign m_axi_wr.awvalid = m_axi_awvalid_reg; assign m_axi_wr.bready = m_axi_bready_reg; always_comb begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; strb_next = strb_reg; wuser_next = wuser_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_next = master_burst_reg; master_burst_size_next = master_burst_size_reg; burst_active_next = burst_active_reg; first_transfer_next = first_transfer_reg; s_axi_awready_next = 1'b0; s_axi_wready_next = 1'b0; s_axi_bid_next = s_axi_bid_reg; s_axi_bresp_next = s_axi_bresp_reg; s_axi_buser_next = s_axi_buser_reg; s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready; m_axi_awid_next = m_axi_awid_reg; m_axi_awaddr_next = m_axi_awaddr_reg; m_axi_awlen_next = m_axi_awlen_reg; m_axi_awsize_next = m_axi_awsize_reg; m_axi_awburst_next = m_axi_awburst_reg; m_axi_awlock_next = m_axi_awlock_reg; m_axi_awcache_next = m_axi_awcache_reg; m_axi_awprot_next = m_axi_awprot_reg; m_axi_awqos_next = m_axi_awqos_reg; m_axi_awregion_next = m_axi_awregion_reg; m_axi_awuser_next = m_axi_awuser_reg; m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_wr.awready; m_axi_bready_next = 1'b0; m_axi_wdata_int = data_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W]; m_axi_wstrb_int = strb_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W]; m_axi_wlast_int = 1'b0; m_axi_wuser_int = wuser_reg; m_axi_wvalid_int = 1'b0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_awready_next = !m_axi_wr.awvalid; first_transfer_next = 1'b1; if (s_axi_wr.awready && s_axi_wr.awvalid) begin s_axi_awready_next = 1'b0; id_next = s_axi_wr.awid; m_axi_awid_next = s_axi_wr.awid; m_axi_awaddr_next = s_axi_wr.awaddr; addr_next = s_axi_wr.awaddr; burst_next = s_axi_wr.awlen; burst_size_next = s_axi_wr.awsize; burst_active_next = 1'b1; if (s_axi_wr.awsize > M_BURST_SIZE) begin // need to adjust burst size if (s_axi_wr.awlen >> (8+M_BURST_SIZE-s_axi_wr.awsize) != 0) begin // limit burst length to max master_burst_next = 8'(32'hff << 3'(s_axi_wr.awsize-M_BURST_SIZE)) | 8'((8'(~s_axi_wr.awaddr) & 8'(8'hff >> (8-s_axi_wr.awsize))) >> M_BURST_SIZE); end else begin master_burst_next = 8'(s_axi_wr.awlen << 3'(s_axi_wr.awsize-M_BURST_SIZE)) | 8'((8'(~s_axi_wr.awaddr) & 8'(8'hff >> (8-s_axi_wr.awsize))) >> M_BURST_SIZE); end master_burst_size_next = M_BURST_SIZE; m_axi_awlen_next = master_burst_next; m_axi_awsize_next = master_burst_size_next; end else begin // pass through narrow (enough) burst master_burst_next = s_axi_wr.awlen; master_burst_size_next = s_axi_wr.awsize; m_axi_awlen_next = s_axi_wr.awlen; m_axi_awsize_next = s_axi_wr.awsize; end m_axi_awburst_next = s_axi_wr.awburst; m_axi_awlock_next = s_axi_wr.awlock; m_axi_awcache_next = s_axi_wr.awcache; m_axi_awprot_next = s_axi_wr.awprot; m_axi_awqos_next = s_axi_wr.awqos; m_axi_awregion_next = s_axi_wr.awregion; m_axi_awuser_next = s_axi_wr.awuser; m_axi_awvalid_next = 1'b1; s_axi_wready_next = m_axi_wready_int_early; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin s_axi_wready_next = m_axi_wready_int_early; if (s_axi_wr.wready && s_axi_wr.wvalid) begin data_next = s_axi_wr.wdata; strb_next = s_axi_wr.wstrb; wuser_next = s_axi_wr.wuser; m_axi_wdata_int = s_axi_wr.wdata[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W]; m_axi_wstrb_int = s_axi_wr.wstrb[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W]; m_axi_wlast_int = 1'b0; m_axi_wuser_int = s_axi_wr.wuser; m_axi_wvalid_int = 1'b1; burst_next = burst_reg - 1; burst_active_next = burst_reg != 0; master_burst_next = master_burst_reg - 1; addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg); if (master_burst_reg == 0) begin s_axi_wready_next = 1'b0; m_axi_bready_next = !s_axi_wr.bvalid && !s_axi_wr.awvalid; m_axi_wlast_int = 1'b1; state_next = STATE_RESP; end else if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin state_next = STATE_DATA; end else begin s_axi_wready_next = 1'b0; state_next = STATE_DATA_2; end end else begin state_next = STATE_DATA; end end STATE_DATA_2: begin s_axi_wready_next = 1'b0; if (m_axi_wready_int_reg) begin m_axi_wdata_int = data_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W]; m_axi_wstrb_int = strb_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W]; m_axi_wlast_int = 1'b0; m_axi_wuser_int = wuser_reg; m_axi_wvalid_int = 1'b1; master_burst_next = master_burst_reg - 1; addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg); if (master_burst_reg == 0) begin // burst on master interface finished; transfer response s_axi_wready_next = 1'b0; m_axi_bready_next = !s_axi_wr.bvalid && !m_axi_wr.awvalid; m_axi_wlast_int = 1'b1; state_next = STATE_RESP; end else if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin state_next = STATE_DATA; end else begin s_axi_wready_next = 1'b0; state_next = STATE_DATA_2; end end else begin state_next = STATE_DATA_2; end end STATE_RESP: begin // resp state; transfer write response m_axi_bready_next = !s_axi.bvalid && !m_axi.awvalid; if (m_axi.bready && m_axi.bvalid) begin first_transfer_next = 1'b0; m_axi_bready_next = 1'b0; s_axi_bid_next = id_reg; if (first_transfer_reg || m_axi.bresp != 0) begin s_axi_bresp_next = m_axi.bresp; end if (burst_reg >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin // limit burst length to max master_burst_next = 8'd255; end else begin master_burst_next = (burst_reg << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE); end master_burst_size_next = M_BURST_SIZE; m_axi_awaddr_next = addr_reg; m_axi_awlen_next = master_burst_next; m_axi_awsize_next = master_burst_size_next; if (burst_active_reg) begin // burst on slave interface still active; start new burst m_axi_awvalid_next = 1'b1; state_next = STATE_DATA; end else begin // burst on slave interface finished; return to idle s_axi_bvalid_next = 1'b1; s_axi_awready_next = !m_axi.awvalid; state_next = STATE_IDLE; end end else begin state_next = STATE_RESP; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; strb_reg <= strb_next; wuser_reg <= wuser_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_reg <= master_burst_next; master_burst_size_reg <= master_burst_size_next; burst_active_reg <= burst_active_next; first_transfer_reg <= first_transfer_next; s_axi_awready_reg <= s_axi_awready_next; s_axi_wready_reg <= s_axi_wready_next; s_axi_bid_reg <= s_axi_bid_next; s_axi_bresp_reg <= s_axi_bresp_next; s_axi_buser_reg <= s_axi_buser_next; s_axi_bvalid_reg <= s_axi_bvalid_next; m_axi_awid_reg <= m_axi_awid_next; m_axi_awaddr_reg <= m_axi_awaddr_next; m_axi_awlen_reg <= m_axi_awlen_next; m_axi_awsize_reg <= m_axi_awsize_next; m_axi_awburst_reg <= m_axi_awburst_next; m_axi_awlock_reg <= m_axi_awlock_next; m_axi_awcache_reg <= m_axi_awcache_next; m_axi_awprot_reg <= m_axi_awprot_next; m_axi_awqos_reg <= m_axi_awqos_next; m_axi_awregion_reg <= m_axi_awregion_next; m_axi_awuser_reg <= m_axi_awuser_next; m_axi_awvalid_reg <= m_axi_awvalid_next; m_axi_bready_reg <= m_axi_bready_next; if (rst) begin state_reg <= STATE_IDLE; s_axi_awready_reg <= 1'b0; s_axi_wready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; m_axi_awvalid_reg <= 1'b0; m_axi_bready_reg <= 1'b0; end end // output datapath logic logic [M_DATA_W-1:0] m_axi_wdata_reg = '0; logic [M_STRB_W-1:0] m_axi_wstrb_reg = '0; logic m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0; logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; logic [M_DATA_W-1:0] temp_m_axi_wdata_reg = '0; logic [M_STRB_W-1:0] temp_m_axi_wstrb_reg = '0; logic temp_m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0; logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next; // datapath control logic store_axi_w_int_to_output; logic store_axi_w_int_to_temp; logic store_axi_w_temp_to_output; assign m_axi_wr.wdata = m_axi_wdata_reg; assign m_axi_wr.wstrb = m_axi_wstrb_reg; assign m_axi_wr.wlast = m_axi_wlast_reg; assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0; assign m_axi_wr.wvalid = m_axi_wvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axi_wready_int_early = m_axi_wr.wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int)); always_comb begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg; store_axi_w_int_to_output = 1'b0; store_axi_w_int_to_temp = 1'b0; store_axi_w_temp_to_output = 1'b0; if (m_axi_wready_int_reg) begin // input is ready if (m_axi_wr.wready | ~m_axi_wvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_temp = 1'b1; end end else if (m_axi_wr.wready) begin // input is not ready, but output is ready m_axi_wvalid_next = temp_m_axi_wvalid_reg; temp_m_axi_wvalid_next = 1'b0; store_axi_w_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin if (rst) begin m_axi_wvalid_reg <= 1'b0; m_axi_wready_int_reg <= 1'b0; temp_m_axi_wvalid_reg <= 1'b0; end else begin m_axi_wvalid_reg <= m_axi_wvalid_next; m_axi_wready_int_reg <= m_axi_wready_int_early; temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next; end // datapath if (store_axi_w_int_to_output) begin m_axi_wdata_reg <= m_axi_wdata_int; m_axi_wstrb_reg <= m_axi_wstrb_int; m_axi_wlast_reg <= m_axi_wlast_int; m_axi_wuser_reg <= m_axi_wuser_int; end else if (store_axi_w_temp_to_output) begin m_axi_wdata_reg <= temp_m_axi_wdata_reg; m_axi_wstrb_reg <= temp_m_axi_wstrb_reg; m_axi_wlast_reg <= temp_m_axi_wlast_reg; m_axi_wuser_reg <= temp_m_axi_wuser_reg; end if (store_axi_w_int_to_temp) begin temp_m_axi_wdata_reg <= m_axi_wdata_int; temp_m_axi_wstrb_reg <= m_axi_wstrb_int; temp_m_axi_wlast_reg <= m_axi_wlast_int; temp_m_axi_wuser_reg <= m_axi_wuser_int; end end end endmodule `resetall