axi: Add AXI lite crossbar module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-11-11 15:06:32 -08:00
parent d68d421694
commit 053c9368e9
11 changed files with 1958 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
taxi_axil_crossbar.sv
taxi_axil_crossbar_wr.f
taxi_axil_crossbar_rd.f

View File

@@ -0,0 +1,160 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar
*/
module taxi_axil_crossbar #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd16}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AW channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AW_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface W channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_W_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface B channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_B_REG_TYPE = {S_COUNT{2'd1}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AW channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AW_REG_TYPE = {M_COUNT{2'd1}},
// Master interface W channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_W_REG_TYPE = {M_COUNT{2'd2}},
// Master interface B channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_B_REG_TYPE = {M_COUNT{2'd0}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.wr_slv s_axil_wr[S_COUNT],
taxi_axil_if.rd_slv s_axil_rd[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.wr_mst m_axil_wr[M_COUNT],
taxi_axil_if.rd_mst m_axil_rd[M_COUNT]
);
taxi_axil_crossbar_wr #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_WR),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AW_REG_TYPE(S_AW_REG_TYPE),
.S_W_REG_TYPE(S_W_REG_TYPE),
.S_B_REG_TYPE(S_B_REG_TYPE)
)
wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI lite slave interfaces
*/
.s_axil_wr(s_axil_wr),
/*
* AXI lite master interfaces
*/
.m_axil_wr(m_axil_wr)
);
taxi_axil_crossbar_rd #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_RD),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AR_REG_TYPE(S_AR_REG_TYPE),
.S_R_REG_TYPE(S_R_REG_TYPE)
)
rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI lite slave interfaces
*/
.s_axil_rd(s_axil_rd),
/*
* AXI lite master interfaces
*/
.m_axil_rd(m_axil_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,301 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar address decode and admission control
*/
module taxi_axil_crossbar_addr #
(
// Slave interface index
parameter S = 0,
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Select signal width
parameter SEL_W = $clog2(M_COUNT),
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Address width in bits for address decoding
parameter STRB_W = 4,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Enable write command output
parameter WC_OUTPUT = 0
)
(
input wire logic clk,
input wire logic rst,
/*
* Address input
*/
input wire logic [ADDR_W-1:0] s_axil_aaddr,
input wire logic [2:0] s_axil_aprot,
input wire logic s_axil_avalid,
output wire logic s_axil_aready,
/*
* Select output
*/
output wire logic [SEL_W-1:0] m_select,
output wire logic m_axil_avalid,
input wire logic m_axil_aready,
/*
* Write command output
*/
output wire logic [SEL_W-1:0] m_wc_select,
output wire logic m_wc_decerr,
output wire logic m_wc_valid,
input wire logic m_wc_ready,
/*
* Reply command output
*/
output wire logic [SEL_W-1:0] m_rc_select,
output wire logic m_rc_decerr,
output wire logic m_rc_valid,
input wire logic m_rc_ready
);
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (M_REGIONS < 1)
$fatal(0, "Error: M_REGIONS must be at least 1 (instance %m)");
initial begin
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axil_crossbar_addr instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [0:0]
STATE_IDLE = 1'd0,
STATE_DECODE = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic s_axil_aready_reg = 1'b0, s_axil_aready_next;
logic [SEL_W-1:0] m_select_reg = '0, m_select_next;
logic m_axil_avalid_reg = 1'b0, m_axil_avalid_next;
logic m_decerr_reg = 1'b0, m_decerr_next;
logic m_wc_valid_reg = 1'b0, m_wc_valid_next;
logic m_rc_valid_reg = 1'b0, m_rc_valid_next;
assign s_axil_aready = s_axil_aready_reg;
assign m_select = m_select_reg;
assign m_axil_avalid = m_axil_avalid_reg;
assign m_wc_select = m_select_reg;
assign m_wc_decerr = m_decerr_reg;
assign m_wc_valid = m_wc_valid_reg;
assign m_rc_select = m_select_reg;
assign m_rc_decerr = m_decerr_reg;
assign m_rc_valid = m_rc_valid_reg;
logic match;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
s_axil_aready_next = 1'b0;
m_select_next = m_select_reg;
m_axil_avalid_next = m_axil_avalid_reg && !m_axil_aready;
m_decerr_next = m_decerr_reg;
m_wc_valid_next = m_wc_valid_reg && !m_wc_ready;
m_rc_valid_next = m_rc_valid_reg && !m_rc_ready;
case (state_reg)
STATE_IDLE: begin
// idle state, store values
s_axil_aready_next = 1'b0;
if (s_axil_avalid && !s_axil_aready) begin
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !s_axil_aprot[1]) && M_CONNECT_INT[i][S] && (s_axil_aaddr >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = SEL_W'(i);
match = 1'b1;
end
end
end
if (match) begin
// address decode successful
m_axil_avalid_next = 1'b1;
m_decerr_next = 1'b0;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end else begin
// decode error
m_axil_avalid_next = 1'b0;
m_decerr_next = 1'b1;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
if (!m_axil_avalid_next && (!m_wc_valid_next || !WC_OUTPUT) && !m_rc_valid_next) begin
s_axil_aready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DECODE;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axil_aready_reg <= s_axil_aready_next;
m_axil_avalid_reg <= m_axil_avalid_next;
m_wc_valid_reg <= m_wc_valid_next;
m_rc_valid_reg <= m_rc_valid_next;
m_select_reg <= m_select_next;
m_decerr_reg <= m_decerr_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_aready_reg <= 1'b0;
m_axil_avalid_reg <= 1'b0;
m_wc_valid_reg <= 1'b0;
m_rc_valid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,6 @@
taxi_axil_crossbar_rd.sv
taxi_axil_crossbar_addr.sv
taxi_axil_register_rd.sv
taxi_axil_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,463 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar (read)
*/
module taxi_axil_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd16}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.rd_slv s_axil_rd[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.rd_mst m_axil_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axil_rd[0].DATA_W;
localparam S_ADDR_W = s_axil_rd[0].ADDR_W;
localparam STRB_W = s_axil_rd[0].STRB_W;
localparam logic ARUSER_EN = s_axil_rd[0].ARUSER_EN && m_axil_rd[0].ARUSER_EN;
localparam ARUSER_W = s_axil_rd[0].ARUSER_W;
localparam logic RUSER_EN = s_axil_rd[0].RUSER_EN && m_axil_rd[0].RUSER_EN;
localparam RUSER_W = s_axil_rd[0].RUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axil_rd[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axil_rd[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axil_rd[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
wire [ADDR_W-1:0] int_s_axil_araddr[S_COUNT];
wire [2:0] int_s_axil_arprot[S_COUNT];
logic [M_COUNT-1:0] int_axil_arvalid[S_COUNT];
logic [S_COUNT-1:0] int_axil_arready[M_COUNT];
wire [DATA_W-1:0] int_m_axil_rdata[M_COUNT];
wire [1:0] int_m_axil_rresp[M_COUNT];
logic [S_COUNT-1:0] int_axil_rvalid[M_COUNT];
logic [M_COUNT-1:0] int_axil_rready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axil_if #(
.DATA_W(s_axil_rd[0].DATA_W),
.ADDR_W(s_axil_rd[0].ADDR_W),
.STRB_W(s_axil_rd[0].STRB_W),
.AWUSER_EN(s_axil_rd[0].AWUSER_EN),
.AWUSER_W(s_axil_rd[0].AWUSER_W),
.WUSER_EN(s_axil_rd[0].WUSER_EN),
.WUSER_W(s_axil_rd[0].WUSER_W),
.BUSER_EN(s_axil_rd[0].BUSER_EN),
.BUSER_W(s_axil_rd[0].BUSER_W),
.ARUSER_EN(s_axil_rd[0].ARUSER_EN),
.ARUSER_W(s_axil_rd[0].ARUSER_W),
.RUSER_EN(s_axil_rd[0].RUSER_EN),
.RUSER_W(s_axil_rd[0].RUSER_W)
) int_axil();
// S side register
taxi_axil_register_rd #(
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_rd(s_axil_rd[m]),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(int_axil)
);
// response routing FIFO
localparam FIFO_AW = $clog2(S_ACCEPT_INT[m])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = 0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = 0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_M_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic fifo_decerr[2**FIFO_AW];
wire [CL_M_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_decerr;
wire fifo_wr_en;
logic [CL_M_COUNT_INT-1:0] fifo_rd_select_reg = 0;
logic fifo_rd_decerr_reg = 0;
logic fifo_rd_valid_reg = 0;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
integer i;
initial begin
for (i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = 0;
fifo_decerr[i] = 0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_decerr[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_decerr;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
fifo_rd_valid_reg <= fifo_rd_valid_reg && !fifo_rd_en;
if ((fifo_rd_ptr_reg != fifo_wr_ptr_reg) && (!fifo_rd_valid_reg || fifo_rd_en)) begin
fifo_rd_select_reg <= fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_decerr_reg <= fifo_decerr[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_valid_reg <= 1'b1;
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= 0;
fifo_rd_ptr_reg <= 0;
fifo_rd_valid_reg <= 1'b0;
end
end
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axil_avalid;
wire m_axil_aready;
wire [CL_M_COUNT_INT-1:0] m_rc_select;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
taxi_axil_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axil_aaddr(int_axil.araddr),
.s_axil_aprot(int_axil.arprot),
.s_axil_avalid(int_axil.arvalid),
.s_axil_aready(int_axil.arready),
/*
* Address output
*/
.m_select(a_select),
.m_axil_avalid(m_axil_avalid),
.m_axil_aready(m_axil_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_select(m_rc_select),
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready)
);
assign int_s_axil_araddr[m] = int_axil.araddr;
assign int_s_axil_arprot[m] = int_axil.arprot;
always_comb begin
int_axil_arvalid[m] = '0;
int_axil_arvalid[m][a_select] = m_axil_avalid;
end
assign m_axil_aready = int_axil_arready[a_select][m];
// response handling
assign fifo_wr_select = m_rc_select;
assign fifo_wr_decerr = m_rc_decerr;
assign fifo_wr_en = m_rc_valid && !fifo_half_full_reg;
assign m_rc_ready = !fifo_half_full_reg;
// write response handling
wire [CL_M_COUNT_INT-1:0] r_select = M_COUNT > 1 ? fifo_rd_select_reg : '0;
wire r_decerr = fifo_rd_decerr_reg;
wire r_valid = fifo_rd_valid_reg;
// read response mux
assign int_axil.rdata = r_decerr ? '0 : int_m_axil_rdata[r_select];
assign int_axil.rresp = r_decerr ? 2'b11 : int_m_axil_rresp[r_select];
assign int_axil.rvalid = (r_decerr ? 1'b1 : int_axil_rvalid[r_select][m]) && r_valid;
always_comb begin
int_axil_rready[m] = '0;
int_axil_rready[m][r_select] = r_valid && int_axil.rready;
end
assign fifo_rd_en = int_axil.rvalid && int_axil.rready && r_valid;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axil_if #(
.DATA_W(m_axil_rd[0].DATA_W),
.ADDR_W(m_axil_rd[0].ADDR_W),
.STRB_W(m_axil_rd[0].STRB_W),
.AWUSER_EN(m_axil_rd[0].AWUSER_EN),
.AWUSER_W(m_axil_rd[0].AWUSER_W),
.WUSER_EN(m_axil_rd[0].WUSER_EN),
.WUSER_W(m_axil_rd[0].WUSER_W),
.BUSER_EN(m_axil_rd[0].BUSER_EN),
.BUSER_W(m_axil_rd[0].BUSER_W),
.ARUSER_EN(m_axil_rd[0].ARUSER_EN),
.ARUSER_W(m_axil_rd[0].ARUSER_W),
.RUSER_EN(m_axil_rd[0].RUSER_EN),
.RUSER_W(m_axil_rd[0].RUSER_W)
) int_axil();
// response routing FIFO
localparam FIFO_AW = $clog2(M_ISSUE_INT[n])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = '0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = '0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_S_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
wire [CL_S_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_en;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
initial begin
for (integer i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = '0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
if (fifo_rd_en) begin
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= '0;
fifo_rd_ptr_reg <= '0;
end
end
// address arbitration
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
assign int_axil.araddr = int_s_axil_araddr[a_grant_index];
assign int_axil.arprot = int_s_axil_arprot[a_grant_index];
assign int_axil.arvalid = int_axil_arvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axil_arready[n] = '0;
int_axil_arready[n][a_grant_index] = a_grant_valid && int_axil.arready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axil_arvalid[m][n] && !a_grant_valid && !fifo_half_full_reg;
assign a_ack[m] = a_grant[m] && int_axil_arvalid[m][n] && int_axil.arready;
end
assign fifo_wr_select = a_grant_index;
assign fifo_wr_en = int_axil.arvalid && int_axil.arready && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT_INT-1:0] r_select = S_COUNT > 1 ? fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]] : '0;
assign int_m_axil_rdata[n] = int_axil.rdata;
assign int_m_axil_rresp[n] = int_axil.rresp;
always_comb begin
int_axil_rvalid[n] = '0;
int_axil_rvalid[n][r_select] = int_axil.rvalid;
end
assign int_axil.rready = int_axil_rready[r_select][n];
assign fifo_rd_en = int_axil.rvalid && int_axil.rready;
// M side register
taxi_axil_register_rd #(
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_rd(int_axil),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(m_axil_rd[n])
);
end // m_ifaces
endmodule
`resetall

View File

@@ -0,0 +1,6 @@
taxi_axil_crossbar_wr.sv
taxi_axil_crossbar_addr.sv
taxi_axil_register_wr.sv
taxi_axil_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,556 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar (write)
*/
module taxi_axil_crossbar_wr #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd16}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AW channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AW_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface W channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_W_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface B channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_B_REG_TYPE = {S_COUNT{2'd1}},
// Master interface AW channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AW_REG_TYPE = {M_COUNT{2'd1}},
// Master interface W channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_W_REG_TYPE = {M_COUNT{2'd2}},
// Master interface B channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_B_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.wr_slv s_axil_wr[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.wr_mst m_axil_wr[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axil_wr[0].DATA_W;
localparam S_ADDR_W = s_axil_wr[0].ADDR_W;
localparam STRB_W = s_axil_wr[0].STRB_W;
localparam logic AWUSER_EN = s_axil_wr[0].AWUSER_EN && m_axil_wr[0].AWUSER_EN;
localparam AWUSER_W = s_axil_wr[0].AWUSER_W;
localparam logic WUSER_EN = s_axil_wr[0].WUSER_EN && m_axil_wr[0].WUSER_EN;
localparam WUSER_W = s_axil_wr[0].WUSER_W;
localparam logic BUSER_EN = s_axil_wr[0].BUSER_EN && m_axil_wr[0].BUSER_EN;
localparam BUSER_W = s_axil_wr[0].BUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axil_wr[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axil_wr[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axil_wr[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
wire [ADDR_W-1:0] int_s_axil_awaddr[S_COUNT];
wire [2:0] int_s_axil_awprot[S_COUNT];
logic [M_COUNT-1:0] int_axil_awvalid[S_COUNT];
logic [S_COUNT-1:0] int_axil_awready[M_COUNT];
wire [DATA_W-1:0] int_s_axil_wdata[S_COUNT];
wire [STRB_W-1:0] int_s_axil_wstrb[S_COUNT];
logic [M_COUNT-1:0] int_axil_wvalid[S_COUNT];
logic [S_COUNT-1:0] int_axil_wready[M_COUNT];
wire [1:0] int_m_axil_bresp[M_COUNT];
logic [S_COUNT-1:0] int_axil_bvalid[M_COUNT];
logic [M_COUNT-1:0] int_axil_bready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axil_if #(
.DATA_W(s_axil_wr[0].DATA_W),
.ADDR_W(s_axil_wr[0].ADDR_W),
.STRB_W(s_axil_wr[0].STRB_W),
.AWUSER_EN(s_axil_wr[0].AWUSER_EN),
.AWUSER_W(s_axil_wr[0].AWUSER_W),
.WUSER_EN(s_axil_wr[0].WUSER_EN),
.WUSER_W(s_axil_wr[0].WUSER_W),
.BUSER_EN(s_axil_wr[0].BUSER_EN),
.BUSER_W(s_axil_wr[0].BUSER_W),
.ARUSER_EN(s_axil_wr[0].ARUSER_EN),
.ARUSER_W(s_axil_wr[0].ARUSER_W),
.RUSER_EN(s_axil_wr[0].RUSER_EN),
.RUSER_W(s_axil_wr[0].RUSER_W)
) int_axil();
// S side register
taxi_axil_register_wr #(
.AW_REG_TYPE(S_AW_REG_TYPE[m*2 +: 2]),
.W_REG_TYPE(S_W_REG_TYPE[m*2 +: 2]),
.B_REG_TYPE(S_B_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_wr(s_axil_wr[m]),
/*
* AXI4-Lite master interface
*/
.m_axil_wr(int_axil)
);
// response routing FIFO
localparam FIFO_AW = $clog2(S_ACCEPT_INT[m])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = '0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = '0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_M_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic fifo_decerr[2**FIFO_AW];
wire [CL_M_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_decerr;
wire fifo_wr_en;
logic [CL_M_COUNT_INT-1:0] fifo_rd_select_reg = '0;
logic fifo_rd_decerr_reg = 1'b0;
logic fifo_rd_valid_reg = 1'b0;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
initial begin
for (integer i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = '0;
fifo_decerr[i] = '0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_decerr[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_decerr;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
fifo_rd_valid_reg <= fifo_rd_valid_reg && !fifo_rd_en;
if ((fifo_rd_ptr_reg != fifo_wr_ptr_reg) && (!fifo_rd_valid_reg || fifo_rd_en)) begin
fifo_rd_select_reg <= fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_decerr_reg <= fifo_decerr[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_valid_reg <= 1'b1;
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= '0;
fifo_rd_ptr_reg <= '0;
fifo_rd_valid_reg <= 1'b0;
end
end
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axil_avalid;
wire m_axil_aready;
wire [CL_M_COUNT_INT-1:0] m_wc_select;
wire m_wc_decerr;
wire m_wc_valid;
wire m_wc_ready;
wire [CL_M_COUNT_INT-1:0] m_rc_select;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
taxi_axil_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(1)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axil_aaddr(int_axil.awaddr),
.s_axil_aprot(int_axil.awprot),
.s_axil_avalid(int_axil.awvalid),
.s_axil_aready(int_axil.awready),
/*
* Address output
*/
.m_select(a_select),
.m_axil_avalid(m_axil_avalid),
.m_axil_aready(m_axil_aready),
/*
* Write command output
*/
.m_wc_select(m_wc_select),
.m_wc_decerr(m_wc_decerr),
.m_wc_valid(m_wc_valid),
.m_wc_ready(m_wc_ready),
/*
* Response command output
*/
.m_rc_select(m_rc_select),
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready)
);
assign int_s_axil_awaddr[m] = int_axil.awaddr;
assign int_s_axil_awprot[m] = int_axil.awprot;
always_comb begin
int_axil_awvalid[m] = '0;
int_axil_awvalid[m][a_select] = m_axil_avalid;
end
assign m_axil_aready = int_axil_awready[a_select][m];
// write command handling
logic [CL_M_COUNT_INT-1:0] w_select_reg = '0, w_select_next;
logic w_drop_reg = 1'b0, w_drop_next;
logic w_select_valid_reg = 1'b0, w_select_valid_next;
assign m_wc_ready = !w_select_valid_reg;
always_comb begin
w_select_next = w_select_reg;
w_drop_next = w_drop_reg && !(int_axil.wvalid && int_axil.wready);
w_select_valid_next = w_select_valid_reg && !(int_axil.wvalid && int_axil.wready);
if (m_wc_valid && !w_select_valid_reg) begin
w_select_next = m_wc_select;
w_drop_next = m_wc_decerr;
w_select_valid_next = m_wc_valid;
end
end
always_ff @(posedge clk) begin
w_select_valid_reg <= w_select_valid_next;
w_select_reg <= w_select_next;
w_drop_reg <= w_drop_next;
if (rst) begin
w_select_valid_reg <= 1'b0;
end
end
// write data forwarding
assign int_s_axil_wdata[m] = int_axil.wdata;
assign int_s_axil_wstrb[m] = int_axil.wstrb;
always_comb begin
int_axil_wvalid[m] = '0;
int_axil_wvalid[m][w_select_reg] = int_axil.wvalid && w_select_valid_reg && !w_drop_reg;
end
assign int_axil.wready = int_axil_wready[w_select_reg][m] || w_drop_reg;
// response handling
assign fifo_wr_select = m_rc_select;
assign fifo_wr_decerr = m_rc_decerr;
assign fifo_wr_en = m_rc_valid && !fifo_half_full_reg;
assign m_rc_ready = !fifo_half_full_reg;
// write response handling
wire [CL_M_COUNT_INT-1:0] b_select = M_COUNT > 1 ? fifo_rd_select_reg : '0;
wire b_decerr = fifo_rd_decerr_reg;
wire b_valid = fifo_rd_valid_reg;
// write response mux
assign int_axil.bresp = b_decerr ? 2'b11 : int_m_axil_bresp[b_select];
assign int_axil.bvalid = (b_decerr ? 1'b1 : int_axil_bvalid[b_select][m]) && b_valid;
always_comb begin
int_axil_bready[m] = '0;
int_axil_bready[m][b_select] = b_valid && int_axil.bready;
end
assign fifo_rd_en = int_axil.bvalid && int_axil.bready && b_valid;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axil_if #(
.DATA_W(m_axil_wr[0].DATA_W),
.ADDR_W(m_axil_wr[0].ADDR_W),
.STRB_W(m_axil_wr[0].STRB_W),
.AWUSER_EN(m_axil_wr[0].AWUSER_EN),
.AWUSER_W(m_axil_wr[0].AWUSER_W),
.WUSER_EN(m_axil_wr[0].WUSER_EN),
.WUSER_W(m_axil_wr[0].WUSER_W),
.BUSER_EN(m_axil_wr[0].BUSER_EN),
.BUSER_W(m_axil_wr[0].BUSER_W),
.ARUSER_EN(m_axil_wr[0].ARUSER_EN),
.ARUSER_W(m_axil_wr[0].ARUSER_W),
.RUSER_EN(m_axil_wr[0].RUSER_EN),
.RUSER_W(m_axil_wr[0].RUSER_W)
) int_axil();
// response routing FIFO
localparam FIFO_AW = $clog2(M_ISSUE_INT[n])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = '0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = '0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_S_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
wire [CL_S_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_en;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
initial begin
for (integer i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = '0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
if (fifo_rd_en) begin
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= '0;
fifo_rd_ptr_reg <= '0;
end
end
// address arbitration
logic [CL_S_COUNT_INT-1:0] w_select_reg = '0, w_select_next;
logic w_select_valid_reg = 1'b0, w_select_valid_next;
logic w_select_new_reg = 1'b0, w_select_new_next;
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
assign int_axil.awaddr = int_s_axil_awaddr[a_grant_index];
assign int_axil.awprot = int_s_axil_awprot[a_grant_index];
assign int_axil.awvalid = int_axil_awvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axil_awready[n] = '0;
int_axil_awready[n][a_grant_index] = a_grant_valid && int_axil.awready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axil_awvalid[m][n] && !a_grant_valid && !fifo_half_full_reg && !w_select_valid_next;
assign a_ack[m] = a_grant[m] && int_axil_awvalid[m][n] && int_axil.awready;
end
assign fifo_wr_select = a_grant_index;
assign fifo_wr_en = int_axil.awvalid && int_axil.awready && a_grant_valid;
// write data mux
assign int_axil.wdata = int_s_axil_wdata[w_select_reg];
assign int_axil.wstrb = int_s_axil_wstrb[w_select_reg];
assign int_axil.wvalid = int_axil_wvalid[w_select_reg][n] && w_select_valid_reg;
always_comb begin
int_axil_wready[n] = '0;
int_axil_wready[n][w_select_reg] = w_select_valid_reg && int_axil.wready;
end
// write data routing
always_comb begin
w_select_next = w_select_reg;
w_select_valid_next = w_select_valid_reg && !(int_axil.wvalid && int_axil.wready);
w_select_new_next = w_select_new_reg || a_grant_valid == 0 || a_ack != 0;
if (a_grant_valid && !w_select_valid_reg && w_select_new_reg) begin
w_select_next = a_grant_index;
w_select_valid_next = a_grant_valid;
w_select_new_next = 1'b0;
end
end
always_ff @(posedge clk) begin
w_select_reg <= w_select_next;
w_select_valid_reg <= w_select_valid_next;
w_select_new_reg <= w_select_new_next;
if (rst) begin
w_select_valid_reg <= 1'b0;
w_select_new_reg <= 1'b1;
end
end
// write response forwarding
wire [CL_S_COUNT_INT-1:0] b_select = S_COUNT > 1 ? fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]] : '0;
assign int_m_axil_bresp[n] = int_axil.bresp;
always_comb begin
int_axil_bvalid[n] = '0;
int_axil_bvalid[n][b_select] = int_axil.bvalid;
end
assign int_axil.bready = int_axil_bready[b_select][n];
assign fifo_rd_en = int_axil.bvalid && int_axil.bready;
// M side register
taxi_axil_register_wr #(
.AW_REG_TYPE(M_AW_REG_TYPE[n*2 +: 2]),
.W_REG_TYPE(M_W_REG_TYPE[n*2 +: 2]),
.B_REG_TYPE(M_B_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_wr(int_axil),
/*
* AXI4-Lite master interface
*/
.m_axil_wr(m_axil_wr[n])
);
end // m_ifaces
endmodule
`resetall