xfcp: Add XFCP I2C master module

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-03-19 15:56:39 -07:00
parent b8021192e3
commit 2fd346269f
7 changed files with 1449 additions and 0 deletions

View File

@@ -105,6 +105,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* XFCP UART interface
* XFCP AXI module
* XFCP AXI lite module
* XFCP I2C master module
* XFCP switch
## Example designs

View File

@@ -0,0 +1,3 @@
taxi_xfcp_mod_i2c_master.sv
../lss/taxi_i2c_master.sv
../axis/taxi_axis_if.sv

View File

@@ -0,0 +1,815 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2017-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* XFCP I2C master module
*/
module taxi_xfcp_mod_i2c_master #
(
parameter logic [15:0] XFCP_ID_TYPE = 16'h2C00,
parameter XFCP_ID_STR = "I2C Master",
parameter logic [8*16-1:0] XFCP_EXT_ID = 0,
parameter XFCP_EXT_ID_STR = "",
parameter logic [15:0] DEFAULT_PRESCALE = 16'(125000000/400000/4)
)
(
input wire logic clk,
input wire logic rst,
/*
* XFCP upstream port
*/
taxi_axis_if.snk xfcp_usp_ds,
taxi_axis_if.src xfcp_usp_us,
/*
* I2C interface
*/
input wire logic i2c_scl_i,
output wire logic i2c_scl_o,
input wire logic i2c_sda_i,
output wire logic i2c_sda_o
);
localparam START_TAG = 8'hFF;
localparam RPATH_TAG = 8'hFE;
localparam I2C_REQ = 8'h2C;
localparam I2C_RESP = 8'h2D;
localparam ID_REQ = 8'hFE;
localparam ID_RESP = 8'hFF;
// ID ROM
localparam ID_PTR_W = (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) ? 6 : 5;
localparam ID_ROM_SIZE = 2**ID_PTR_W;
logic [7:0] id_rom[ID_ROM_SIZE];
logic [ID_PTR_W-1:0] id_ptr_reg = '0, id_ptr_next;
integer j;
initial begin
// init ID ROM
for (integer i = 0; i < ID_ROM_SIZE; i = i + 1) begin
id_rom[i] = 0;
end
// binary part
{id_rom[1], id_rom[0]} = 16'h2C00 | (16'h00FF & XFCP_ID_TYPE); // module type
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+16] = XFCP_ID_STR[8*(j-i) +: 8];
end
if (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) begin
// extended ID
// binary part
for (integer i = 0; i < 16; i = i + 1) begin
id_rom[i+32] = XFCP_EXT_ID[8*i +: 8];
end
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_EXT_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+48] = XFCP_EXT_ID_STR[8*(j-i) +: 8];
end
end
end
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_HEADER_1 = 4'd1,
STATE_HEADER_2 = 4'd2,
STATE_PROCESS = 4'd3,
STATE_STATUS = 4'd4,
STATE_PRESCALE_L = 4'd5,
STATE_PRESCALE_H = 4'd6,
STATE_COUNT = 4'd7,
STATE_NEXT_CMD= 4'd8,
STATE_WRITE_DATA = 4'd9,
STATE_READ_DATA = 4'd10,
STATE_WAIT_LAST = 4'd11,
STATE_ID = 4'd12;
logic [3:0] state_reg = STATE_IDLE, state_next;
logic [7:0] count_reg = 8'd0, count_next;
logic last_cycle_reg = 1'b0;
logic [6:0] i2c_cmd_address_reg = 7'd0, i2c_cmd_address_next;
logic i2c_cmd_start_reg = 1'b0, i2c_cmd_start_next;
logic i2c_cmd_read_reg = 1'b0, i2c_cmd_read_next;
logic i2c_cmd_write_reg = 1'b0, i2c_cmd_write_next;
logic i2c_cmd_write_multi_reg = 1'b0, i2c_cmd_write_multi_next;
logic i2c_cmd_stop_reg = 1'b0, i2c_cmd_stop_next;
logic i2c_cmd_valid_reg = 1'b0, i2c_cmd_valid_next;
logic cmd_txn_stop_reg = 1'b0, cmd_txn_stop_next;
logic [7:0] i2c_wr_data_reg = 8'd0, i2c_wr_data_next;
logic i2c_wr_data_valid_reg = 1'b0, i2c_wr_data_valid_next;
logic i2c_wr_data_last_reg = 1'b0, i2c_wr_data_last_next;
logic i2c_rd_data_ready_reg = 1'b0, i2c_rd_data_ready_next;
logic [15:0] prescale_reg = DEFAULT_PRESCALE, prescale_next;
logic stop_on_idle_reg = 1'b0, stop_on_idle_next;
logic missed_ack_reg = 1'b0, missed_ack_next;
logic xfcp_usp_ds_tready_reg = 1'b0, xfcp_usp_ds_tready_next;
// internal datapath
logic [7:0] xfcp_usp_us_tdata_int;
logic xfcp_usp_us_tvalid_int;
logic xfcp_usp_us_tready_int_reg = 1'b0;
logic xfcp_usp_us_tlast_int;
logic xfcp_usp_us_tuser_int;
wire xfcp_usp_us_tready_int_early;
taxi_axis_if #(.DATA_W(12), .KEEP_W(1)) i2c_cmd();
taxi_axis_if #(.DATA_W(8)) i2c_rd_data(), i2c_wr_data();
assign i2c_cmd.tdata[6:0] = i2c_cmd_address_reg;
assign i2c_cmd.tdata[7] = i2c_cmd_start_reg;
assign i2c_cmd.tdata[8] = i2c_cmd_read_reg;
assign i2c_cmd.tdata[9] = i2c_cmd_write_reg;
assign i2c_cmd.tdata[10] = i2c_cmd_write_multi_reg;
assign i2c_cmd.tdata[11] = i2c_cmd_stop_reg;
assign i2c_cmd.tvalid = i2c_cmd_valid_reg;
assign i2c_wr_data.tdata = i2c_wr_data_reg;
assign i2c_wr_data.tvalid = i2c_wr_data_valid_reg;
assign i2c_wr_data.tlast = i2c_wr_data_last_reg;
assign i2c_rd_data.tready = i2c_rd_data_ready_reg;
wire busy;
wire bus_control;
wire bus_active;
wire missed_ack;
assign xfcp_usp_ds.tready = xfcp_usp_ds_tready_reg;
always_comb begin
state_next = STATE_IDLE;
count_next = count_reg;
id_ptr_next = id_ptr_reg;
i2c_cmd_address_next = i2c_cmd_address_reg;
i2c_cmd_start_next = i2c_cmd_start_reg;
i2c_cmd_read_next = i2c_cmd_read_reg;
i2c_cmd_write_next = i2c_cmd_write_reg;
i2c_cmd_write_multi_next = i2c_cmd_write_multi_reg;
i2c_cmd_stop_next = i2c_cmd_stop_reg;
i2c_cmd_valid_next = i2c_cmd_valid_reg && !i2c_cmd.tready;
cmd_txn_stop_next = cmd_txn_stop_reg;
i2c_wr_data_next = i2c_wr_data_reg;
i2c_wr_data_valid_next = i2c_wr_data_valid_reg && !i2c_wr_data.tready;
i2c_wr_data_last_next = i2c_wr_data_last_reg;
i2c_rd_data_ready_next = 1'b0;
prescale_next = prescale_reg;
stop_on_idle_next = stop_on_idle_reg;
missed_ack_next = missed_ack_reg || missed_ack;
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tdata_int = 8'd0;
xfcp_usp_us_tvalid_int = 1'b0;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle, wait for start of packet
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
id_ptr_next = 5'd0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tlast) begin
// last asserted, ignore cycle
state_next = STATE_IDLE;
end else if (xfcp_usp_ds.tdata == RPATH_TAG) begin
// need to pass through rpath
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_HEADER_1;
end else if (xfcp_usp_ds.tdata == START_TAG) begin
// process header
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_HEADER_2;
end else begin
// bad start byte, drop packet
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_HEADER_1: begin
// transfer through header
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
// transfer through
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tlast) begin
// last asserted in header, mark as such and drop
xfcp_usp_us_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else if (xfcp_usp_ds.tdata == START_TAG) begin
// process header
state_next = STATE_HEADER_2;
end else begin
state_next = STATE_HEADER_1;
end
end else begin
state_next = STATE_HEADER_1;
end
end
STATE_HEADER_2: begin
// read packet type
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tdata == I2C_REQ && !xfcp_usp_ds.tlast) begin
// start of read
xfcp_usp_us_tdata_int = I2C_RESP;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_PROCESS;
end else if (xfcp_usp_ds.tdata == ID_REQ) begin
// identify
xfcp_usp_us_tdata_int = ID_RESP;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_ID;
end else begin
// invalid
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b1;
xfcp_usp_us_tuser_int = 1'b1;
if (xfcp_usp_ds.tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end
end else begin
state_next = STATE_HEADER_2;
end
end
STATE_PROCESS: begin
// process commands
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = xfcp_usp_ds.tready && xfcp_usp_ds.tvalid;
xfcp_usp_us_tlast_int = xfcp_usp_ds.tlast;
xfcp_usp_us_tuser_int = 1'b0;
count_next = 8'd0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tdata[7]) begin
// set address
i2c_cmd_address_next = xfcp_usp_ds.tdata[6:0];
state_next = STATE_PROCESS;
end else if (xfcp_usp_ds.tdata[6]) begin
if (xfcp_usp_ds.tdata[5:0] == 6'b000000) begin
// status query
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tlast_int = 1'b0;
state_next = STATE_STATUS;
end else if (xfcp_usp_ds.tdata[5:0] == 6'b100000) begin
// set prescale
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_PRESCALE_L;
end else begin
// unknown command
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_PROCESS;
end
end
end else begin
i2c_cmd_start_next = xfcp_usp_ds.tdata[0];
i2c_cmd_read_next = xfcp_usp_ds.tdata[1];
i2c_cmd_write_next = xfcp_usp_ds.tdata[2];
i2c_cmd_stop_next = xfcp_usp_ds.tdata[3];
i2c_cmd_valid_next = (i2c_cmd_start_next || i2c_cmd_read_next || i2c_cmd_write_next || i2c_cmd_stop_next);
cmd_txn_stop_next = i2c_cmd_stop_next;
if (xfcp_usp_ds.tdata[4]) begin
i2c_cmd_stop_next = 1'b0;
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
// read in count value
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_COUNT;
end
end else if (i2c_cmd_write_next && !i2c_cmd_read_next) begin
// write
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
// start writing
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_wr_data_valid_reg;
state_next = STATE_WRITE_DATA;
end
end else if (i2c_cmd_read_next && !i2c_cmd_write_next) begin
// read
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tlast_int = 1'b0;
state_next = STATE_READ_DATA;
end else begin
// unknown
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_PROCESS;
end
end
end
end else begin
state_next = STATE_PROCESS;
end
end
STATE_STATUS: begin
// read status
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tdata_int = '0;
xfcp_usp_us_tdata_int[0] = busy;
xfcp_usp_us_tdata_int[1] = bus_control;
xfcp_usp_us_tdata_int[2] = bus_active;
xfcp_usp_us_tdata_int[3] = missed_ack_reg;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = last_cycle_reg;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_us_tready_int_reg) begin
missed_ack_next = missed_ack;
if (last_cycle_reg) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
// process next command
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
state_next = STATE_PROCESS;
end
end else begin
state_next = STATE_STATUS;
end
end
STATE_PRESCALE_L: begin
// store prescale value
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = xfcp_usp_ds.tready && xfcp_usp_ds.tvalid;
xfcp_usp_us_tlast_int = xfcp_usp_ds.tlast;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
prescale_next[7:0] = xfcp_usp_ds.tdata;
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
state_next = STATE_IDLE;
end else begin
state_next = STATE_PRESCALE_H;
end
end else begin
state_next = STATE_PRESCALE_L;
end
end
STATE_PRESCALE_H: begin
// store prescale value
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = xfcp_usp_ds.tready && xfcp_usp_ds.tvalid;
xfcp_usp_us_tlast_int = xfcp_usp_ds.tlast;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
prescale_next[15:8] = xfcp_usp_ds.tdata;
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
state_next = STATE_IDLE;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
state_next = STATE_PROCESS;
end
end else begin
state_next = STATE_PRESCALE_H;
end
end
STATE_COUNT: begin
// store count value
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = xfcp_usp_ds.tready && xfcp_usp_ds.tvalid;
xfcp_usp_us_tlast_int = xfcp_usp_ds.tlast;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
count_next = xfcp_usp_ds.tdata;
if (i2c_cmd_write_reg && !i2c_cmd_read_reg) begin
// write
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
// start writing
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_wr_data_valid_reg;
state_next = STATE_WRITE_DATA;
end
end else if (i2c_cmd_read_reg && !i2c_cmd_write_reg) begin
// start reading
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tlast_int = 1'b0;
state_next = STATE_READ_DATA;
end else begin
// neither, process next command
if (xfcp_usp_ds.tlast) begin
// last cycle; return to idle
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
state_next = STATE_PROCESS;
end
end
end else begin
state_next = STATE_COUNT;
end
end
STATE_NEXT_CMD: begin
// next command
if (~i2c_cmd_valid_reg) begin
i2c_cmd_start_next = 1'b0;
i2c_cmd_valid_next = 1'b1;
count_next = count_reg - 1;
if (count_reg == 2) begin
i2c_cmd_stop_next = cmd_txn_stop_reg;
end
if (i2c_cmd_write_reg) begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_wr_data_valid_reg;
state_next = STATE_WRITE_DATA;
end else if (i2c_cmd_read_reg) begin
xfcp_usp_ds_tready_next = 1'b0;
state_next = STATE_READ_DATA;
end
end else begin
state_next = STATE_NEXT_CMD;
end
end
STATE_WRITE_DATA: begin
// write data
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_wr_data_valid_reg;
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = xfcp_usp_ds.tready && xfcp_usp_ds.tvalid;
xfcp_usp_us_tlast_int = xfcp_usp_ds.tlast;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
i2c_wr_data_next = xfcp_usp_ds.tdata;
i2c_wr_data_valid_next = 1'b1;
if (xfcp_usp_ds.tlast) begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
if (count_reg > 1) begin
xfcp_usp_ds_tready_next = 1'b0;
state_next = STATE_NEXT_CMD;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
state_next = STATE_PROCESS;
end
end
end else begin
state_next = STATE_WRITE_DATA;
end
end
STATE_READ_DATA: begin
// read data
xfcp_usp_ds_tready_next = 1'b0;
i2c_rd_data_ready_next = xfcp_usp_us_tready_int_early;
xfcp_usp_us_tdata_int = i2c_rd_data.tdata;
xfcp_usp_us_tvalid_int = i2c_rd_data.tvalid;
xfcp_usp_us_tlast_int = last_cycle_reg;
xfcp_usp_us_tuser_int = 1'b0;
if (i2c_rd_data_ready_reg && i2c_rd_data.tvalid) begin
if (count_reg > 1) begin
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_ds_tready_next = 1'b0;
state_next = STATE_NEXT_CMD;
end else begin
if (last_cycle_reg) begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early && !i2c_cmd_valid_reg;
state_next = STATE_PROCESS;
end
end
end else begin
state_next = STATE_READ_DATA;
end
end
STATE_ID: begin
// send ID
// drop padding
xfcp_usp_ds_tready_next = !(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast));
xfcp_usp_us_tdata_int = id_rom[id_ptr_reg];
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_us_tready_int_reg) begin
id_ptr_next = id_ptr_reg + 1;
if (id_ptr_reg == ID_ROM_SIZE-1) begin
xfcp_usp_us_tlast_int = 1'b1;
if (!(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast))) begin
state_next = STATE_WAIT_LAST;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_ID;
end
end else begin
state_next = STATE_ID;
end
end
STATE_WAIT_LAST: begin
// wait for end of frame
xfcp_usp_ds_tready_next = 1'b1;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tlast) begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_WAIT_LAST;
end
end
default: begin
// return to idle
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_ptr_reg <= id_ptr_next;
count_reg <= count_next;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
last_cycle_reg <= xfcp_usp_ds.tlast;
end
i2c_cmd_address_reg <= i2c_cmd_address_next;
i2c_cmd_start_reg <= i2c_cmd_start_next;
i2c_cmd_read_reg <= i2c_cmd_read_next;
i2c_cmd_write_reg <= i2c_cmd_write_next;
i2c_cmd_write_multi_reg <= i2c_cmd_write_multi_next;
i2c_cmd_stop_reg <= i2c_cmd_stop_next;
i2c_cmd_valid_reg <= i2c_cmd_valid_next;
cmd_txn_stop_reg <= cmd_txn_stop_next;
i2c_wr_data_reg <= i2c_wr_data_next;
i2c_wr_data_valid_reg <= i2c_wr_data_valid_next;
i2c_wr_data_last_reg <= i2c_wr_data_last_next;
i2c_rd_data_ready_reg <= i2c_rd_data_ready_next;
prescale_reg <= prescale_next;
stop_on_idle_reg <= stop_on_idle_next;
missed_ack_reg <= missed_ack_next;
xfcp_usp_ds_tready_reg <= xfcp_usp_ds_tready_next;
if (rst) begin
state_reg <= STATE_IDLE;
i2c_cmd_address_reg <= 7'd0;
i2c_cmd_valid_reg <= 1'b0;
i2c_wr_data_valid_reg <= 1'b0;
i2c_rd_data_ready_reg <= 1'b0;
prescale_reg <= DEFAULT_PRESCALE;
stop_on_idle_reg <= 1'b0;
missed_ack_reg <= 1'b0;
xfcp_usp_ds_tready_reg <= 1'b0;
end
end
// output datapath logic
reg [7:0] xfcp_usp_us_tdata_reg = 8'd0;
reg xfcp_usp_us_tvalid_reg = 1'b0, xfcp_usp_us_tvalid_next;
reg xfcp_usp_us_tlast_reg = 1'b0;
reg xfcp_usp_us_tuser_reg = 1'b0;
reg [7:0] temp_xfcp_usp_us_tdata_reg = 8'd0;
reg temp_xfcp_usp_us_tvalid_reg = 1'b0, temp_xfcp_usp_us_tvalid_next;
reg temp_xfcp_usp_us_tlast_reg = 1'b0;
reg temp_xfcp_usp_us_tuser_reg = 1'b0;
// datapath control
reg store_up_xfcp_int_to_output;
reg store_up_xfcp_int_to_temp;
reg store_up_xfcp_temp_to_output;
assign xfcp_usp_us.tdata = xfcp_usp_us_tdata_reg;
assign xfcp_usp_us.tkeep = '1;
assign xfcp_usp_us.tstrb = xfcp_usp_us.tkeep;
assign xfcp_usp_us.tvalid = xfcp_usp_us_tvalid_reg;
assign xfcp_usp_us.tlast = xfcp_usp_us_tlast_reg;
assign xfcp_usp_us.tid = '0;
assign xfcp_usp_us.tdest = '0;
assign xfcp_usp_us.tuser = xfcp_usp_us_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign xfcp_usp_us_tready_int_early = xfcp_usp_us.tready || (!temp_xfcp_usp_us_tvalid_reg && (!xfcp_usp_us_tvalid_reg || !xfcp_usp_us_tvalid_int));
always_comb begin
// transfer sink ready state to source
xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_reg;
temp_xfcp_usp_us_tvalid_next = temp_xfcp_usp_us_tvalid_reg;
store_up_xfcp_int_to_output = 1'b0;
store_up_xfcp_int_to_temp = 1'b0;
store_up_xfcp_temp_to_output = 1'b0;
if (xfcp_usp_us_tready_int_reg) begin
// input is ready
if (xfcp_usp_us.tready || !xfcp_usp_us_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_int;
store_up_xfcp_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_int;
store_up_xfcp_int_to_temp = 1'b1;
end
end else if (xfcp_usp_us.tready) begin
// input is not ready, but output is ready
xfcp_usp_us_tvalid_next = temp_xfcp_usp_us_tvalid_reg;
temp_xfcp_usp_us_tvalid_next = 1'b0;
store_up_xfcp_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
xfcp_usp_us_tvalid_reg <= 1'b0;
xfcp_usp_us_tready_int_reg <= 1'b0;
temp_xfcp_usp_us_tvalid_reg <= 1'b0;
end else begin
xfcp_usp_us_tvalid_reg <= xfcp_usp_us_tvalid_next;
xfcp_usp_us_tready_int_reg <= xfcp_usp_us_tready_int_early;
temp_xfcp_usp_us_tvalid_reg <= temp_xfcp_usp_us_tvalid_next;
end
// datapath
if (store_up_xfcp_int_to_output) begin
xfcp_usp_us_tdata_reg <= xfcp_usp_us_tdata_int;
xfcp_usp_us_tlast_reg <= xfcp_usp_us_tlast_int;
xfcp_usp_us_tuser_reg <= xfcp_usp_us_tuser_int;
end else if (store_up_xfcp_temp_to_output) begin
xfcp_usp_us_tdata_reg <= temp_xfcp_usp_us_tdata_reg;
xfcp_usp_us_tlast_reg <= temp_xfcp_usp_us_tlast_reg;
xfcp_usp_us_tuser_reg <= temp_xfcp_usp_us_tuser_reg;
end
if (store_up_xfcp_int_to_temp) begin
temp_xfcp_usp_us_tdata_reg <= xfcp_usp_us_tdata_int;
temp_xfcp_usp_us_tlast_reg <= xfcp_usp_us_tlast_int;
temp_xfcp_usp_us_tuser_reg <= xfcp_usp_us_tuser_int;
end
end
taxi_i2c_master
i2c_master_inst (
.clk(clk),
.rst(rst),
/*
* Host interface
*/
.s_axis_cmd(i2c_cmd),
.s_axis_data(i2c_wr_data),
.m_axis_data(i2c_rd_data),
/*
* I2C interface
*/
.scl_i(i2c_scl_i),
.scl_o(i2c_scl_o),
.sda_i(i2c_sda_i),
.sda_o(i2c_sda_o),
/*
* Status
*/
.busy(busy),
.bus_control(bus_control),
.bus_active(bus_active),
.missed_ack(missed_ack),
/*
* Configuration
*/
.prescale(prescale_reg),
.stop_on_idle(stop_on_idle_reg)
);
endmodule
`resetall

View File

@@ -0,0 +1,46 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_xfcp_mod_i2c_master
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/xfcp/$(DUT).f
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_DEFAULT_PRESCALE := $(shell expr 125000000 / 400000 / 4 )
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,365 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import struct
import sys
import cocotb_test.simulator
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamSource, AxiStreamSink
from cocotbext.i2c import I2cMemory
try:
from xfcp import XfcpFrame
except ImportError:
# attempt import from current directory
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
try:
from xfcp import XfcpFrame
finally:
del sys.path[0]
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 8, units="ns").start())
self.usp_source = AxiStreamSource(AxiStreamBus.from_entity(dut.xfcp_usp_ds), dut.clk, dut.rst)
self.usp_sink = AxiStreamSink(AxiStreamBus.from_entity(dut.xfcp_usp_us), dut.clk, dut.rst)
self.i2c_mem = []
self.i2c_mem.append(I2cMemory(sda=dut.i2c_sda_o, sda_o=dut.i2c_sda_i,
scl=dut.i2c_scl_o, scl_o=dut.i2c_scl_i, addr=0x50, size=1024))
self.i2c_mem.append(I2cMemory(sda=dut.i2c_sda_o, sda_o=dut.i2c_sda_i,
scl=dut.i2c_scl_o, scl_o=dut.i2c_scl_i, addr=0x51, size=1024))
def set_idle_generator(self, generator=None):
if generator:
self.usp_source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.usp_sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def get_status(self):
self.log.debug("Get status")
pkt = XfcpFrame()
pkt.ptype = 0x2C
pkt.payload = b'\x40'
self.log.debug("TX packet: %s", pkt)
await self.usp_source.send(pkt.build())
rx_frame = await self.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
self.log.debug("RX packet: %s", rx_pkt)
status = rx_pkt.payload[-1]
self.log.debug("Status: 0x%x", status)
return status
async def set_prescale(self, val):
self.log.debug("Set prescale: %s", val)
payload = bytearray()
payload.append(0x60) # set prescale
payload.extend(struct.pack('<H', val)) # prescale
pkt = XfcpFrame()
pkt.ptype = 0x2C
pkt.payload = payload
self.log.debug("TX packet: %s", pkt)
await self.usp_source.send(pkt.build())
rx_frame = await self.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
self.log.debug("RX packet: %s", rx_pkt)
async def run_test_write(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
# change prescale setting
await tb.set_prescale(125000000//4000000//4)
test_data = b'\x11\x22\x33\x44'
for mem in tb.i2c_mem:
data = struct.pack('>H', 0x0004)+test_data
payload = bytearray()
payload.append(0x80 | mem.addr) # set address
payload.append(0x1C) # start write
payload.append(len(data)) # length
payload.extend(data) # data
pkt = XfcpFrame()
pkt.ptype = 0x2C
pkt.payload = payload
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
for k in range(1000):
await RisingEdge(dut.clk)
data = mem.read_mem(4, 4)
tb.log.info("Read data: %s", data)
assert data == test_data
status = await tb.get_status()
# no missed ACKs
assert not (status & 8)
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_read(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
# change prescale setting
await tb.set_prescale(125000000//4000000//4)
test_data = b'\x11\x22\x33\x44'
for mem in tb.i2c_mem:
mem.write_mem(4, test_data)
payload = bytearray()
payload.append(0x80 | mem.addr) # set address
payload.append(0x14) # start write
payload.append(2) # length
payload.extend(struct.pack('>H', 0x0004)) # address
payload.append(0x1A) # start read
payload.append(4) # length
pkt = XfcpFrame()
pkt.ptype = 0x2C
pkt.payload = payload
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
data = rx_pkt.payload[-4:]
tb.log.info("Read data: %s", data)
assert data == test_data
status = await tb.get_status()
# no missed ACKs
assert not (status & 8)
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_nack(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
# change prescale setting
await tb.set_prescale(125000000//4000000//4)
payload = bytearray()
payload.append(0x80 | 0x55) # set address
payload.append(0x14) # start write
payload.append(2) # length
payload.extend(struct.pack('>H', 0x0004)) # address
pkt = XfcpFrame()
pkt.ptype = 0x2C
pkt.payload = payload
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
status = await tb.get_status()
# no missed ACKs
assert (status & 8)
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_id(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
pkt = XfcpFrame()
pkt.ptype = 0xFE
pkt.payload = b''
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
assert len(rx_pkt.payload) == 32
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
if cocotb.SIM_NAME:
for test in [
run_test_write,
run_test_read,
run_test_nack,
run_test_id,
]:
factory = TestFactory(test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.dirname(__file__)
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
def test_taxi_xfcp_mod_i2c_master(request):
dut = "taxi_xfcp_mod_i2c_master"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "xfcp", f"{dut}.f"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['DEFAULT_PRESCALE'] = 125000000//400000//4
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,60 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* XFCP I2C master module testbench
*/
module test_taxi_xfcp_mod_i2c_master #
(
/* verilator lint_off WIDTHTRUNC */
parameter logic [15:0] DEFAULT_PRESCALE = 125000000/400000/4
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(.DATA_W(8), .LAST_EN(1), .USER_EN(1), .USER_W(1)) xfcp_usp_ds(), xfcp_usp_us();
logic i2c_scl_i;
logic i2c_scl_o;
logic i2c_sda_i;
logic i2c_sda_o;
taxi_xfcp_mod_i2c_master #(
.DEFAULT_PRESCALE(DEFAULT_PRESCALE)
)
uut (
.clk(clk),
.rst(rst),
/*
* XFCP upstream port
*/
.xfcp_usp_ds(xfcp_usp_ds),
.xfcp_usp_us(xfcp_usp_us),
/*
* I2C interface
*/
.i2c_scl_i(i2c_scl_i),
.i2c_scl_o(i2c_scl_o),
.i2c_sda_i(i2c_sda_i),
.i2c_sda_o(i2c_sda_o)
);
endmodule
`resetall

View File

@@ -0,0 +1,159 @@
# SPDX-License-Identifier: MIT
"""
Copyright (c) 2017-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import struct
def cobs_encode(block):
block = bytes(block)
enc = bytearray()
seg = bytearray()
code = 1
new_data = True
for b in block:
if b == 0:
enc.append(code)
enc.extend(seg)
code = 1
seg = bytearray()
new_data = True
else:
code += 1
seg.append(b)
new_data = True
if code == 255:
enc.append(code)
enc.extend(seg)
code = 1
seg = bytearray()
new_data = False
if new_data:
enc.append(code)
enc.extend(seg)
return bytes(enc)
def cobs_decode(block):
block = bytes(block)
dec = bytearray()
code = 0
i = 0
if 0 in block:
return None
while i < len(block):
code = block[i]
i += 1
if i+code-1 > len(block):
return None
dec.extend(block[i:i+code-1])
i += code-1
if code < 255 and i < len(block):
dec.append(0)
return bytes(dec)
class XfcpFrame(object):
def __init__(self, payload=b'', path=[], rpath=[], ptype=0):
self._payload = b''
self.path = path
self.rpath = rpath
self.ptype = ptype
if type(payload) is bytes:
self.payload = payload
if type(payload) is XfcpFrame:
self.payload = payload.payload
self.path = list(payload.path)
self.rpath = list(payload.rpath)
self.ptype = payload.ptype
@property
def payload(self):
return self._payload
@payload.setter
def payload(self, value):
self._payload = bytes(value)
def build(self):
data = bytearray()
for p in self.path:
data.extend(struct.pack('B', p))
if self.rpath:
data.extend(struct.pack('B', 0xFE))
for p in self.rpath:
data.extend(struct.pack('B', p))
data.extend(struct.pack('B', 0xFF))
data.extend(struct.pack('B', self.ptype))
data.extend(self.payload)
return data
def build_cobs(self):
return cobs_encode(self.build())+b'\x00'
@classmethod
def parse(cls, data):
data = bytes(data)
i = 0
path = []
rpath = []
while i < len(data) and data[i] < 0xFE:
path.append(data[i])
i += 1
if data[i] == 0xFE:
i += 1
while i < len(data) and data[i] < 0xFE:
rpath.append(data[i])
i += 1
assert data[i] == 0xFF
i += 1
ptype = data[i]
i += 1
payload = data[i:]
return cls(payload, path, rpath, ptype)
@classmethod
def parse_cobs(cls, data):
return cls.parse(cobs_decode(bytes(data)))
def __eq__(self, other):
if type(other) is XfcpFrame:
return (self.path == other.path and
self.rpath == other.rpath and
self.ptype == other.ptype and
self.payload == other.payload)
return False
def __repr__(self):
return f"XfcpFrame(payload={self.payload!r}, path={self.path!r}, rpath={self.rpath!r}, ptype={self.ptype})"