ptp: Add PTP period output module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-13 17:06:46 -08:00
parent d1578513c8
commit 38a150b87a
3 changed files with 532 additions and 0 deletions

313
rtl/ptp/taxi_ptp_perout.sv Normal file
View File

@@ -0,0 +1,313 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* PTP period out module
*/
module taxi_ptp_perout #
(
parameter logic FNS_EN = 1'b1,
parameter OUT_START_S = 48'h0,
parameter OUT_START_NS = 30'h0,
parameter OUT_START_FNS = 16'h0000,
parameter OUT_PERIOD_S = 48'd1,
parameter OUT_PERIOD_NS = 30'd0,
parameter OUT_PERIOD_FNS = 16'h0000,
parameter OUT_WIDTH_S = 48'h0,
parameter OUT_WIDTH_NS = 30'd1000,
parameter OUT_WIDTH_FNS = 16'h0000
)
(
input wire logic clk,
input wire logic rst,
/*
* Timestamp input from PTP clock
*/
input wire logic [95:0] input_ts_tod,
input wire logic input_ts_tod_step,
/*
* Control
*/
input wire logic enable,
input wire logic [95:0] input_start,
input wire logic input_start_valid,
input wire logic [95:0] input_period,
input wire logic input_period_valid,
input wire logic [95:0] input_width,
input wire logic input_width_valid,
/*
* Status
*/
output wire logic locked,
output wire logic error,
/*
* Pulse output
*/
output wire logic output_pulse
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_UPDATE_RISE = 2'd1,
STATE_UPDATE_FALL = 2'd2;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [47:0] time_s_reg = '0;
logic [29:0] time_ns_reg = '0;
logic [15:0] time_fns_reg = '0;
logic [47:0] next_rise_s_reg = '0, next_rise_s_next;
logic [29:0] next_rise_ns_reg = '0, next_rise_ns_next;
logic [15:0] next_rise_fns_reg = '0, next_rise_fns_next;
logic [47:0] next_edge_s_reg = '0, next_edge_s_next;
logic [29:0] next_edge_ns_reg = '0, next_edge_ns_next;
logic [15:0] next_edge_fns_reg = '0, next_edge_fns_next;
logic [47:0] start_s_reg = 48'(OUT_START_S);
logic [29:0] start_ns_reg = 30'(OUT_START_NS);
logic [15:0] start_fns_reg = 16'(OUT_START_FNS);
logic [47:0] period_s_reg = 48'(OUT_PERIOD_S);
logic [29:0] period_ns_reg = 30'(OUT_PERIOD_NS);
logic [15:0] period_fns_reg = 16'(OUT_PERIOD_FNS);
logic [47:0] width_s_reg = 48'(OUT_WIDTH_S);
logic [29:0] width_ns_reg = 30'(OUT_WIDTH_NS);
logic [15:0] width_fns_reg = 16'(OUT_WIDTH_FNS);
logic [29:0] ts_tod_ns_inc_reg = '0, ts_tod_ns_inc_next;
logic [15:0] ts_tod_fns_inc_reg = '0, ts_tod_fns_inc_next;
logic [30:0] ts_tod_ns_ovf_reg = '0, ts_tod_ns_ovf_next;
logic [15:0] ts_tod_fns_ovf_reg = '0, ts_tod_fns_ovf_next;
logic restart_reg = 1'b1;
logic locked_reg = 1'b0, locked_next;
logic error_reg = 1'b0, error_next;
logic ffwd_reg = 1'b0, ffwd_next;
logic level_reg = 1'b0, level_next;
logic output_reg = 1'b0, output_next;
assign locked = locked_reg;
assign error = error_reg;
assign output_pulse = output_reg;
always_comb begin
state_next = STATE_IDLE;
next_rise_s_next = next_rise_s_reg;
next_rise_ns_next = next_rise_ns_reg;
next_rise_fns_next = next_rise_fns_reg;
next_edge_s_next = next_edge_s_reg;
next_edge_ns_next = next_edge_ns_reg;
next_edge_fns_next = next_edge_fns_reg;
ts_tod_ns_inc_next = ts_tod_ns_inc_reg;
ts_tod_fns_inc_next = ts_tod_fns_inc_reg;
ts_tod_ns_ovf_next = ts_tod_ns_ovf_reg;
ts_tod_fns_ovf_next = ts_tod_fns_ovf_reg;
locked_next = locked_reg;
error_next = error_reg;
ffwd_next = ffwd_reg;
level_next = level_reg;
output_next = output_reg;
case (state_reg)
STATE_IDLE: begin
if (ffwd_reg || level_reg) begin
// fast forward or falling edge, set up for next rising edge
// set next rise time to previous rise time plus period
{ts_tod_ns_inc_next, ts_tod_fns_inc_next} = {next_rise_ns_reg, next_rise_fns_reg} + {period_ns_reg, period_fns_reg};
{ts_tod_ns_ovf_next, ts_tod_fns_ovf_next} = {next_rise_ns_reg, next_rise_fns_reg} + {period_ns_reg, period_fns_reg} - {30'd1_000_000_000, 16'd0};
end else begin
// rising edge; set up for next falling edge
// set next fall time to previous rise time plus width
{ts_tod_ns_inc_next, ts_tod_fns_inc_next} = {next_rise_ns_reg, next_rise_fns_reg} + {width_ns_reg, width_fns_reg};
{ts_tod_ns_ovf_next, ts_tod_fns_ovf_next} = {next_rise_ns_reg, next_rise_fns_reg} + {width_ns_reg, width_fns_reg} - {30'd1_000_000_000, 16'd0};
end
// wait for edge
if ((time_s_reg > next_edge_s_reg) || (time_s_reg == next_edge_s_reg && {time_ns_reg, time_fns_reg} > {next_edge_ns_reg, next_edge_fns_reg})) begin
if (ffwd_reg || level_reg) begin
// fast forward or falling edge, set up for next rising edge
output_next = 1'b0;
level_next = 1'b0;
state_next = STATE_UPDATE_RISE;
end else begin
// rising edge; set up for next falling edge
locked_next = 1'b1;
error_next = 1'b0;
output_next = enable;
level_next = 1'b1;
state_next = STATE_UPDATE_FALL;
end
end else begin
ffwd_next = 1'b0;
state_next = STATE_IDLE;
end
end
STATE_UPDATE_RISE: begin
if (!ts_tod_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
next_edge_s_next = next_rise_s_reg + period_s_reg + 1;
next_edge_ns_next = ts_tod_ns_ovf_reg[29:0];
next_edge_fns_next = ts_tod_fns_ovf_reg;
end else begin
// no increment seconds field
next_edge_s_next = next_rise_s_reg + period_s_reg;
next_edge_ns_next = ts_tod_ns_inc_reg;
next_edge_fns_next = ts_tod_fns_inc_reg;
end
next_rise_s_next = next_edge_s_next;
next_rise_ns_next = next_edge_ns_next;
next_rise_fns_next = next_edge_fns_next;
state_next = STATE_IDLE;
end
STATE_UPDATE_FALL: begin
if (!ts_tod_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
next_edge_s_next = next_rise_s_reg + width_s_reg + 1;
next_edge_ns_next = ts_tod_ns_ovf_reg[29:0];
next_edge_fns_next = ts_tod_fns_ovf_reg;
end else begin
// no increment seconds field
next_edge_s_next = next_rise_s_reg + width_s_reg;
next_edge_ns_next = ts_tod_ns_inc_reg;
next_edge_fns_next = ts_tod_fns_inc_reg;
end
state_next = STATE_IDLE;
end
default: begin
state_next = STATE_IDLE;
end
endcase
if (restart_reg || input_ts_tod_step) begin
// set next rise and next edge to start time
next_rise_s_next = start_s_reg;
next_rise_ns_next = start_ns_reg;
if (FNS_EN) begin
next_rise_fns_next = start_fns_reg;
end
next_edge_s_next = start_s_reg;
next_edge_ns_next = start_ns_reg;
if (FNS_EN) begin
next_edge_fns_next = start_fns_reg;
end
locked_next = 1'b0;
ffwd_next = 1'b1;
output_next = 1'b0;
level_next = 1'b0;
error_next = input_ts_tod_step;
state_next = STATE_IDLE;
end
end
always_ff @(posedge clk) begin
state_reg <= state_next;
restart_reg <= 1'b0;
time_s_reg <= input_ts_tod[95:48];
time_ns_reg <= input_ts_tod[45:16];
if (FNS_EN) begin
time_fns_reg <= input_ts_tod[15:0];
end
if (input_start_valid) begin
start_s_reg <= input_start[95:48];
start_ns_reg <= input_start[45:16];
if (FNS_EN) begin
start_fns_reg <= input_start[15:0];
end
restart_reg <= 1'b1;
end
if (input_period_valid) begin
period_s_reg <= input_period[95:48];
period_ns_reg <= input_period[45:16];
if (FNS_EN) begin
period_fns_reg <= input_period[15:0];
end
restart_reg <= 1'b1;
end
if (input_width_valid) begin
width_s_reg <= input_width[95:48];
width_ns_reg <= input_width[45:16];
if (FNS_EN) begin
width_fns_reg <= input_width[15:0];
end
end
next_rise_s_reg <= next_rise_s_next;
next_rise_ns_reg <= next_rise_ns_next;
if (FNS_EN) begin
next_rise_fns_reg <= next_rise_fns_next;
end
next_edge_s_reg <= next_edge_s_next;
next_edge_ns_reg <= next_edge_ns_next;
if (FNS_EN) begin
next_edge_fns_reg <= next_edge_fns_next;
end
ts_tod_ns_inc_reg <= ts_tod_ns_inc_next;
if (FNS_EN) begin
ts_tod_fns_inc_reg <= ts_tod_fns_inc_next;
end
ts_tod_ns_ovf_reg <= ts_tod_ns_ovf_next;
if (FNS_EN) begin
ts_tod_fns_ovf_reg <= ts_tod_fns_ovf_next;
end
locked_reg <= locked_next;
error_reg <= error_next;
ffwd_reg <= ffwd_next;
level_reg <= level_next;
output_reg <= output_next;
if (rst) begin
state_reg <= STATE_IDLE;
start_s_reg <= 48'(OUT_START_S);
start_ns_reg <= 30'(OUT_START_NS);
start_fns_reg <= 16'(OUT_START_FNS);
period_s_reg <= 48'(OUT_PERIOD_S);
period_ns_reg <= 30'(OUT_PERIOD_NS);
period_fns_reg <= 16'(OUT_PERIOD_FNS);
width_s_reg <= 48'(OUT_WIDTH_S);
width_ns_reg <= 30'(OUT_WIDTH_NS);
width_fns_reg <= 16'(OUT_WIDTH_FNS);
restart_reg <= 1'b1;
locked_reg <= 1'b0;
error_reg <= 1'b0;
output_reg <= 1'b0;
end
end
endmodule
`resetall