eth: Add AXI stream 32-bit XGMII Ethernet frame receiver module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-07 16:25:06 -08:00
parent 3f501aaac9
commit 8046a46680
4 changed files with 658 additions and 0 deletions

View File

@@ -0,0 +1,348 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2015-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module taxi_axis_xgmii_rx_32 #
(
parameter DATA_W = 32,
parameter CTRL_W = (DATA_W/8),
parameter logic PTP_TS_EN = 1'b0,
parameter PTP_TS_W = 96
)
(
input wire logic clk,
input wire logic rst,
/*
* XGMII input
*/
input wire logic [DATA_W-1:0] xgmii_rxd,
input wire logic [CTRL_W-1:0] xgmii_rxc,
/*
* Receive interface (AXI stream)
*/
taxi_axis_if.src m_axis_rx,
/*
* PTP
*/
input wire logic [PTP_TS_W-1:0] ptp_ts,
/*
* Configuration
*/
input wire logic cfg_rx_enable,
/*
* Status
*/
output wire logic start_packet,
output wire logic error_bad_frame,
output wire logic error_bad_fcs
);
localparam KEEP_W = DATA_W/8;
localparam USER_W = (PTP_TS_EN ? PTP_TS_W : 0) + 1;
// check configuration
if (DATA_W != 32)
$fatal(0, "Error: Interface width must be 32 (instance %m)");
if (KEEP_W*8 != DATA_W || CTRL_W*8 != DATA_W)
$fatal(0, "Error: Interface requires byte (8-bit) granularity (instance %m)");
if (m_axis_rx.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axis_rx.USER_W != USER_W)
$fatal(0, "Error: Interface USER_W parameter mismatch (instance %m)");
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PREAMBLE = 2'd1,
STATE_PAYLOAD = 2'd2,
STATE_LAST = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
logic reset_crc;
logic [1:0] term_lane_reg = 0, term_lane_d0_reg = 0;
logic term_present_reg = 1'b0;
logic framing_error_reg = 1'b0;
logic [DATA_W-1:0] xgmii_rxd_d0 = '0;
logic [DATA_W-1:0] xgmii_rxd_d1 = '0;
logic [DATA_W-1:0] xgmii_rxd_d2 = '0;
logic [CTRL_W-1:0] xgmii_rxc_d0 = '0;
logic xgmii_start_d0 = 1'b0;
logic xgmii_start_d1 = 1'b0;
logic xgmii_start_d2 = 1'b0;
logic [DATA_W-1:0] m_axis_rx_tdata_reg = '0, m_axis_rx_tdata_next;
logic [KEEP_W-1:0] m_axis_rx_tkeep_reg = '0, m_axis_rx_tkeep_next;
logic m_axis_rx_tvalid_reg = 1'b0, m_axis_rx_tvalid_next;
logic m_axis_rx_tlast_reg = 1'b0, m_axis_rx_tlast_next;
logic m_axis_rx_tuser_reg = 1'b0, m_axis_rx_tuser_next;
logic start_packet_reg = 1'b0, start_packet_next;
logic error_bad_frame_reg = 1'b0, error_bad_frame_next;
logic error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
logic [PTP_TS_W-1:0] ptp_ts_out_reg = '0, ptp_ts_out_next;
logic [31:0] crc_state = '1;
wire [31:0] crc_next;
wire [3:0] crc_valid;
logic [3:0] crc_valid_save;
assign crc_valid[3] = crc_next == ~32'h2144df1c;
assign crc_valid[2] = crc_next == ~32'hc622f71d;
assign crc_valid[1] = crc_next == ~32'hb1c2a1a3;
assign crc_valid[0] = crc_next == ~32'h9d6cdf7e;
assign m_axis_rx.tdata = m_axis_rx_tdata_reg;
assign m_axis_rx.tkeep = m_axis_rx_tkeep_reg;
assign m_axis_rx.tstrb = m_axis_rx.tkeep;
assign m_axis_rx.tvalid = m_axis_rx_tvalid_reg;
assign m_axis_rx.tlast = m_axis_rx_tlast_reg;
assign m_axis_rx.tid = '0;
assign m_axis_rx.tdest = '0;
assign m_axis_rx.tuser[0] = m_axis_rx_tuser_reg;
if (PTP_TS_EN) begin
assign m_axis_rx.tuser[1 +: PTP_TS_W] = ptp_ts_out_reg;
end
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
taxi_lfsr #(
.LFSR_W(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_GALOIS(1),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_W(32)
)
eth_crc (
.data_in(xgmii_rxd_d0),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always_comb begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
m_axis_rx_tdata_next = xgmii_rxd_d2;
m_axis_rx_tkeep_next = {KEEP_W{1'b1}};
m_axis_rx_tvalid_next = 1'b0;
m_axis_rx_tlast_next = 1'b0;
m_axis_rx_tuser_next = 1'b0;
ptp_ts_out_next = ptp_ts_out_reg;
start_packet_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_start_d2 && cfg_rx_enable) begin
// start condition
if (framing_error_reg) begin
// control or error characters in first data word
m_axis_rx_tdata_next = xgmii_rxd_d2;
m_axis_rx_tkeep_next = 4'h1;
m_axis_rx_tvalid_next = 1'b1;
m_axis_rx_tlast_next = 1'b1;
m_axis_rx_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
state_next = STATE_PREAMBLE;
end
end else begin
if (PTP_TS_EN) begin
ptp_ts_out_next = ptp_ts;
end
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// drop preamble
start_packet_next = 1'b1;
state_next = STATE_PAYLOAD;
end
STATE_PAYLOAD: begin
// read payload
m_axis_rx_tdata_next = xgmii_rxd_d2;
m_axis_rx_tkeep_next = {KEEP_W{1'b1}};
m_axis_rx_tvalid_next = 1'b1;
m_axis_rx_tlast_next = 1'b0;
m_axis_rx_tuser_next = 1'b0;
if (framing_error_reg) begin
// control or error characters in packet
m_axis_rx_tlast_next = 1'b1;
m_axis_rx_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (term_present_reg) begin
reset_crc = 1'b1;
if (term_lane_reg == 0) begin
// end this cycle
m_axis_rx_tkeep_next = 4'b1111;
m_axis_rx_tlast_next = 1'b1;
if (term_lane_reg == 0 && crc_valid_save[3]) begin
// CRC valid
end else begin
m_axis_rx_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_rx_tdata_next = xgmii_rxd_d2;
m_axis_rx_tkeep_next = {KEEP_W{1'b1}} >> 2'(CTRL_W-term_lane_d0_reg);
m_axis_rx_tvalid_next = 1'b1;
m_axis_rx_tlast_next = 1'b1;
m_axis_rx_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((term_lane_d0_reg == 1 && crc_valid_save[0]) ||
(term_lane_d0_reg == 2 && crc_valid_save[1]) ||
(term_lane_d0_reg == 3 && crc_valid_save[2])) begin
// CRC valid
end else begin
m_axis_rx_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end
default: begin
// invalid state, return to idle
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
m_axis_rx_tdata_reg <= m_axis_rx_tdata_next;
m_axis_rx_tkeep_reg <= m_axis_rx_tkeep_next;
m_axis_rx_tvalid_reg <= m_axis_rx_tvalid_next;
m_axis_rx_tlast_reg <= m_axis_rx_tlast_next;
m_axis_rx_tuser_reg <= m_axis_rx_tuser_next;
ptp_ts_out_reg <= ptp_ts_out_next;
start_packet_reg <= start_packet_next;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
term_lane_reg <= 0;
term_present_reg <= 1'b0;
framing_error_reg <= xgmii_rxc != 0;
for (integer i = CTRL_W-1; i >= 0; i = i - 1) begin
if (xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM)) begin
term_lane_reg <= 2'(i);
term_present_reg <= 1'b1;
framing_error_reg <= (xgmii_rxc & ({CTRL_W{1'b1}} >> (CTRL_W-i))) != 0;
end
end
term_lane_d0_reg <= term_lane_reg;
if (reset_crc) begin
crc_state <= '1;
end else begin
crc_state <= crc_next;
end
crc_valid_save <= crc_valid;
for (integer i = 0; i < CTRL_W; i = i + 1) begin
xgmii_rxd_d0[i*8 +: 8] <= xgmii_rxc[i] ? 8'd0 : xgmii_rxd[i*8 +: 8];
end
xgmii_rxc_d0 <= xgmii_rxc;
xgmii_rxd_d1 <= xgmii_rxd_d0;
xgmii_rxd_d2 <= xgmii_rxd_d1;
xgmii_start_d0 <= xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START;
xgmii_start_d1 <= xgmii_start_d0;
xgmii_start_d2 <= xgmii_start_d1;
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_rx_tvalid_reg <= 1'b0;
start_packet_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
xgmii_rxc_d0 <= '0;
xgmii_start_d0 <= 1'b0;
xgmii_start_d1 <= 1'b0;
xgmii_start_d2 <= 1'b0;
end
end
endmodule
`resetall