mirror of
https://github.com/fpganinja/taxi.git
synced 2025-12-09 17:08:38 -08:00
lfsr: Add parametrizable LFSR module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
313
rtl/lfsr/taxi_lfsr.sv
Normal file
313
rtl/lfsr/taxi_lfsr.sv
Normal file
@@ -0,0 +1,313 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2016-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* Parametrizable combinatorial parallel LFSR/CRC
|
||||
*/
|
||||
module taxi_lfsr #
|
||||
(
|
||||
// width of LFSR
|
||||
parameter LFSR_W = 31,
|
||||
// LFSR polynomial
|
||||
parameter logic [LFSR_W-1:0] LFSR_POLY = 31'h10000001,
|
||||
// LFSR configuration: 0 for Fibonacci (PRBS), 1 for Galois (CRC)
|
||||
parameter logic LFSR_GALOIS = 1'b0,
|
||||
// LFSR feed forward enable
|
||||
parameter logic LFSR_FEED_FORWARD = 1'b0,
|
||||
// bit-reverse input and output
|
||||
parameter logic REVERSE = 1'b0,
|
||||
// width of data input
|
||||
parameter DATA_W = 8
|
||||
)
|
||||
(
|
||||
input wire logic [DATA_W-1:0] data_in,
|
||||
input wire logic [LFSR_W-1:0] state_in,
|
||||
output wire logic [DATA_W-1:0] data_out,
|
||||
output wire logic [LFSR_W-1:0] state_out
|
||||
);
|
||||
|
||||
/*
|
||||
|
||||
Fully parametrizable combinatorial parallel LFSR/CRC module. Implements an unrolled LFSR
|
||||
next state computation, shifting DATA_W bits per pass through the module. Input data
|
||||
is XORed with LFSR feedback path, tie data_in to zero if this is not required.
|
||||
|
||||
Works in two parts: statically computes a set of bit masks, then uses these bit masks to
|
||||
select bits for XORing to compute the next state.
|
||||
|
||||
Ports:
|
||||
|
||||
data_in
|
||||
|
||||
Data bits to be shifted through the LFSR (DATA_W bits)
|
||||
|
||||
state_in
|
||||
|
||||
LFSR/CRC current state input (LFSR_W bits)
|
||||
|
||||
data_out
|
||||
|
||||
Data bits shifted out of LFSR (DATA_W bits)
|
||||
|
||||
state_out
|
||||
|
||||
LFSR/CRC next state output (LFSR_W bits)
|
||||
|
||||
Parameters:
|
||||
|
||||
LFSR_W
|
||||
|
||||
Specify width of LFSR/CRC register
|
||||
|
||||
LFSR_POLY
|
||||
|
||||
Specify the LFSR/CRC polynomial in hex format. For example, the polynomial
|
||||
|
||||
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
|
||||
|
||||
would be represented as
|
||||
|
||||
32'h04c11db7
|
||||
|
||||
Note that the largest term (x^32) is suppressed. This term is generated automatically based
|
||||
on LFSR_W.
|
||||
|
||||
LFSR_GALOIS
|
||||
|
||||
Specify the LFSR configuration, either Fibonacci (0) or Galois (1). Fibonacci is generally used
|
||||
for linear-feedback shift registers (LFSR) for pseudorandom binary sequence (PRBS) generators,
|
||||
scramblers, and descrambers, while Galois is generally used for cyclic redundancy check
|
||||
generators and checkers.
|
||||
|
||||
Fibonacci style (example for 64b66b scrambler, 0x8000000001)
|
||||
|
||||
DIN (LSB first)
|
||||
|
|
||||
V
|
||||
(+)<---------------------------(+)<-----------------------------.
|
||||
| ^ |
|
||||
| .----. .----. .----. | .----. .----. .----. |
|
||||
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--'
|
||||
| '----' '----' '----' '----' '----' '----'
|
||||
V
|
||||
DOUT
|
||||
|
||||
Galois style (example for CRC16, 0x8005)
|
||||
|
||||
,-------------------+-------------------------+----------(+)<-- DIN (MSB first)
|
||||
| | | ^
|
||||
| .----. .----. V .----. .----. V .----. |
|
||||
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |--+---> DOUT
|
||||
'----' '----' '----' '----' '----'
|
||||
|
||||
LFSR_FEED_FORWARD
|
||||
|
||||
Generate feed forward instead of feed back LFSR. Enable this for PRBS checking and self-
|
||||
synchronous descrambling.
|
||||
|
||||
Fibonacci feed-forward style (example for 64b66b descrambler, 0x8000000001)
|
||||
|
||||
DIN (LSB first)
|
||||
|
|
||||
| .----. .----. .----. .----. .----. .----.
|
||||
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--.
|
||||
| '----' '----' '----' | '----' '----' '----' |
|
||||
| V |
|
||||
(+)<---------------------------(+)------------------------------'
|
||||
|
|
||||
V
|
||||
DOUT
|
||||
|
||||
Galois feed-forward style
|
||||
|
||||
,-------------------+-------------------------+------------+--- DIN (MSB first)
|
||||
| | | |
|
||||
| .----. .----. V .----. .----. V .----. V
|
||||
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |->(+)-> DOUT
|
||||
'----' '----' '----' '----' '----'
|
||||
|
||||
REVERSE
|
||||
|
||||
Bit-reverse LFSR input and output. Shifts MSB first by default, set REVERSE for LSB first.
|
||||
|
||||
DATA_W
|
||||
|
||||
Specify width of input and output data bus. The module will perform one shift per input
|
||||
data bit, so if the input data bus is not required tie data_in to zero and set DATA_W
|
||||
to the required number of shifts per clock cycle.
|
||||
|
||||
Settings for common LFSR/CRC implementations:
|
||||
|
||||
Name Configuration Length Polynomial Initial value Notes
|
||||
CRC16-IBM Galois, bit-reverse 16 16'h8005 16'hffff
|
||||
CRC16-CCITT Galois 16 16'h1021 16'h1d0f
|
||||
CRC32 Galois, bit-reverse 32 32'h04c11db7 32'hffffffff Ethernet FCS; invert final output
|
||||
CRC32C Galois, bit-reverse 32 32'h1edc6f41 32'hffffffff iSCSI, Intel CRC32 instruction; invert final output
|
||||
PRBS6 Fibonacci 6 6'h21 any
|
||||
PRBS7 Fibonacci 7 7'h41 any
|
||||
PRBS9 Fibonacci 9 9'h021 any ITU V.52
|
||||
PRBS10 Fibonacci 10 10'h081 any ITU
|
||||
PRBS11 Fibonacci 11 11'h201 any ITU O.152
|
||||
PRBS15 Fibonacci, inverted 15 15'h4001 any ITU O.152
|
||||
PRBS17 Fibonacci 17 17'h04001 any
|
||||
PRBS20 Fibonacci 20 20'h00009 any ITU V.57
|
||||
PRBS23 Fibonacci, inverted 23 23'h040001 any ITU O.151
|
||||
PRBS29 Fibonacci, inverted 29 29'h08000001 any
|
||||
PRBS31 Fibonacci, inverted 31 31'h10000001 any
|
||||
64b66b Fibonacci, bit-reverse 58 58'h8000000001 any 10G Ethernet
|
||||
128b130b Galois, bit-reverse 23 23'h210125 any PCIe gen 3
|
||||
|
||||
*/
|
||||
|
||||
function [LFSR_W+DATA_W-1:0][LFSR_W+DATA_W-1:0] lfsr_mask();
|
||||
logic [LFSR_W-1:0] lfsr_mask_state[LFSR_W-1:0];
|
||||
logic [DATA_W-1:0] lfsr_mask_data[LFSR_W-1:0];
|
||||
logic [LFSR_W-1:0] output_mask_state[DATA_W-1:0];
|
||||
logic [DATA_W-1:0] output_mask_data[DATA_W-1:0];
|
||||
|
||||
logic [LFSR_W-1:0] state_val;
|
||||
logic [DATA_W-1:0] data_val;
|
||||
|
||||
logic [DATA_W-1:0] data_mask;
|
||||
|
||||
// init bit masks
|
||||
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
||||
lfsr_mask_state[i] = '0;
|
||||
lfsr_mask_state[i][i] = 1'b1;
|
||||
lfsr_mask_data[i] = '0;
|
||||
end
|
||||
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
||||
output_mask_state[i] = '0;
|
||||
if (i < LFSR_W) begin
|
||||
output_mask_state[i][i] = 1'b1;
|
||||
end
|
||||
output_mask_data[i] = '0;
|
||||
end
|
||||
|
||||
// simulate shift register
|
||||
if (LFSR_GALOIS) begin
|
||||
// Galois configuration
|
||||
for (data_mask = {1'b1, {DATA_W-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin
|
||||
// determine shift in value
|
||||
// current value in last FF, XOR with input data bit (MSB first)
|
||||
state_val = lfsr_mask_state[LFSR_W-1];
|
||||
data_val = lfsr_mask_data[LFSR_W-1];
|
||||
data_val = data_val ^ data_mask;
|
||||
|
||||
// shift
|
||||
for (integer j = LFSR_W-1; j > 0; j = j - 1) begin
|
||||
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
||||
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
||||
end
|
||||
for (integer j = DATA_W-1; j > 0; j = j - 1) begin
|
||||
output_mask_state[j] = output_mask_state[j-1];
|
||||
output_mask_data[j] = output_mask_data[j-1];
|
||||
end
|
||||
output_mask_state[0] = state_val;
|
||||
output_mask_data[0] = data_val;
|
||||
if (LFSR_FEED_FORWARD) begin
|
||||
// only shift in new input data
|
||||
state_val = '0;
|
||||
data_val = data_mask;
|
||||
end
|
||||
lfsr_mask_state[0] = state_val;
|
||||
lfsr_mask_data[0] = data_val;
|
||||
|
||||
// add XOR inputs at correct indicies
|
||||
for (integer j = 1; j < LFSR_W; j = j + 1) begin
|
||||
if (LFSR_POLY[j]) begin
|
||||
lfsr_mask_state[j] = lfsr_mask_state[j] ^ state_val;
|
||||
lfsr_mask_data[j] = lfsr_mask_data[j] ^ data_val;
|
||||
end
|
||||
end
|
||||
end
|
||||
end else begin
|
||||
// Fibonacci configuration
|
||||
for (data_mask = {1'b1, {DATA_W-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin
|
||||
// determine shift in value
|
||||
// current value in last FF, XOR with input data bit (MSB first)
|
||||
state_val = lfsr_mask_state[LFSR_W-1];
|
||||
data_val = lfsr_mask_data[LFSR_W-1];
|
||||
data_val = data_val ^ data_mask;
|
||||
|
||||
// add XOR inputs from correct indicies
|
||||
for (integer j = 1; j < LFSR_W; j = j + 1) begin
|
||||
if (LFSR_POLY[j]) begin
|
||||
state_val = lfsr_mask_state[j-1] ^ state_val;
|
||||
data_val = lfsr_mask_data[j-1] ^ data_val;
|
||||
end
|
||||
end
|
||||
|
||||
// shift
|
||||
for (integer j = LFSR_W-1; j > 0; j = j - 1) begin
|
||||
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
||||
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
||||
end
|
||||
for (integer j = DATA_W-1; j > 0; j = j - 1) begin
|
||||
output_mask_state[j] = output_mask_state[j-1];
|
||||
output_mask_data[j] = output_mask_data[j-1];
|
||||
end
|
||||
output_mask_state[0] = state_val;
|
||||
output_mask_data[0] = data_val;
|
||||
if (LFSR_FEED_FORWARD) begin
|
||||
// only shift in new input data
|
||||
state_val = '0;
|
||||
data_val = data_mask;
|
||||
end
|
||||
lfsr_mask_state[0] = state_val;
|
||||
lfsr_mask_data[0] = data_val;
|
||||
end
|
||||
end
|
||||
|
||||
if (REVERSE) begin
|
||||
// output reversed
|
||||
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
||||
for (integer j = 0; j < LFSR_W; j = j + 1) begin
|
||||
lfsr_mask[i][j] = lfsr_mask_state[LFSR_W-i-1][LFSR_W-j-1];
|
||||
end
|
||||
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
||||
lfsr_mask[i][j+LFSR_W] = lfsr_mask_data[LFSR_W-i-1][DATA_W-j-1];
|
||||
end
|
||||
end
|
||||
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
||||
for (integer j = 0; j < LFSR_W; j = j + 1) begin
|
||||
lfsr_mask[i+LFSR_W][j] = output_mask_state[DATA_W-i-1][LFSR_W-j-1];
|
||||
end
|
||||
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
||||
lfsr_mask[i+LFSR_W][j+LFSR_W] = output_mask_data[DATA_W-i-1][DATA_W-j-1];
|
||||
end
|
||||
end
|
||||
end else begin
|
||||
// output normal
|
||||
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
||||
lfsr_mask[i] = {lfsr_mask_data[i], lfsr_mask_state[i]};
|
||||
end
|
||||
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
||||
lfsr_mask[i+LFSR_W] = {output_mask_data[i], output_mask_state[i]};
|
||||
end
|
||||
end
|
||||
endfunction
|
||||
|
||||
wire [LFSR_W+DATA_W-1:0][LFSR_W+DATA_W-1:0] mask = lfsr_mask();
|
||||
|
||||
for (genvar n = 0; n < LFSR_W; n = n + 1) begin : lfsr_state
|
||||
assign state_out[n] = ^({data_in, state_in} & mask[n]);
|
||||
end
|
||||
for (genvar n = 0; n < DATA_W; n = n + 1) begin : lfsr_data
|
||||
assign data_out[n] = ^({data_in, state_in} & mask[n+LFSR_W]);
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
Reference in New Issue
Block a user