axis: Add AXI stream concatenator module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-07-30 18:57:11 -07:00
parent 059c7cd5ce
commit b266aa2949
5 changed files with 787 additions and 0 deletions

View File

@@ -43,6 +43,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* Combined async FIFO + width converter
* Multiplexer
* Broadcaster
* Concatenator
* COBS encoder
* COBS decoder
* Pipeline register

View File

@@ -0,0 +1,407 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream frame concatenator
*/
module taxi_axis_concat #
(
// Number of AXI stream inputs
parameter S_COUNT = 4
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream inputs (sinks)
*/
taxi_axis_if.snk s_axis[S_COUNT],
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis
);
// extract parameters
localparam DATA_W = s_axis[0].DATA_W;
localparam logic KEEP_EN = s_axis[0].KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis[0].KEEP_W;
localparam logic STRB_EN = s_axis[0].STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis[0].LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis[0].ID_EN && m_axis.ID_EN;
localparam ID_W = s_axis[0].ID_W;
localparam logic DEST_EN = s_axis[0].DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis[0].DEST_W;
localparam logic USER_EN = s_axis[0].USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis[0].USER_W;
localparam BYTE_LANES = KEEP_EN ? KEEP_W : 1;
localparam BYTE_SIZE = DATA_W / BYTE_LANES;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_BYTE_LANES = $clog2(BYTE_LANES);
// check configuration
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
if (BYTE_SIZE * BYTE_LANES != DATA_W)
$fatal(0, "Error: input data width not evenly divisible (instance %m)");
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic [KEEP_W-1:0] m_axis_tstrb_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
if (S_COUNT == 1) begin
// degenerate case
assign s_axis[0].tready = m_axis_tready_int_reg;
always_comb begin
// pass through selected packet data
m_axis_tdata_int = s_axis[0].tdata;
m_axis_tkeep_int = s_axis[0].tkeep;
m_axis_tstrb_int = s_axis[0].tstrb;
m_axis_tvalid_int = s_axis[0].tvalid && m_axis_tready_int_reg;
m_axis_tlast_int = s_axis[0].tlast;
m_axis_tid_int = s_axis[0].tid;
m_axis_tdest_int = s_axis[0].tdest;
m_axis_tuser_int = s_axis[0].tuser;
end
end else begin
logic output_ready;
// unpack interface array
wire [DATA_W-1:0] s_axis_tdata[S_COUNT];
wire [KEEP_W-1:0] s_axis_tkeep[S_COUNT];
wire [KEEP_W-1:0] s_axis_tstrb[S_COUNT];
wire [S_COUNT-1:0] s_axis_tvalid;
wire [S_COUNT-1:0] s_axis_tready;
wire [S_COUNT-1:0] s_axis_tlast;
wire [ID_W-1:0] s_axis_tid[S_COUNT];
wire [DEST_W-1:0] s_axis_tdest[S_COUNT];
wire [USER_W-1:0] s_axis_tuser[S_COUNT];
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axis_tdata[n] = s_axis[n].tdata;
assign s_axis_tkeep[n] = s_axis[n].tkeep;
assign s_axis_tstrb[n] = s_axis[n].tstrb;
assign s_axis_tvalid[n] = s_axis[n].tvalid;
assign s_axis[n].tready = s_axis_tready[n];
assign s_axis_tlast[n] = s_axis[n].tlast;
assign s_axis_tid[n] = s_axis[n].tid;
assign s_axis_tdest[n] = s_axis[n].tdest;
assign s_axis_tuser[n] = s_axis[n].tuser;
end
// destripe
logic [CL_S_COUNT-1:0] select_reg = '0, select_next;
reg [S_COUNT-1:0] s_axis_tready_reg = 0, s_axis_tready_next;
assign s_axis_tready = s_axis_tready_reg;
// mux for incoming packet
wire [DATA_W-1:0] current_s_tdata = s_axis_tdata[select_reg];
wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep[select_reg];
wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb[select_reg];
wire current_s_tvalid = s_axis_tvalid[select_reg];
wire current_s_tready = s_axis_tready != 0;
wire current_s_tlast = s_axis_tlast[select_reg];
wire [ID_W-1:0] current_s_tid = s_axis_tid[select_reg];
wire [DEST_W-1:0] current_s_tdest = s_axis_tdest[select_reg];
wire [USER_W-1:0] current_s_tuser = s_axis_tuser[select_reg];
always_comb begin
select_next = select_reg;
s_axis_tready_next = '0;
if (current_s_tvalid && current_s_tready) begin
// move to next piece at end of frame
if (current_s_tlast) begin
if (select_reg < CL_S_COUNT'(S_COUNT-1)) begin
select_next = select_reg + 1;
end else begin
select_next = '0;
end
end
end
// generate ready signal on selected port
s_axis_tready_next[select_next] = m_axis_tready_int_early && output_ready;
end
always_ff @(posedge clk) begin
select_reg <= select_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
select_reg <= '0;
s_axis_tready_reg <= '0;
end
end
if (!KEEP_EN || BYTE_LANES == 1) begin
// degenerate case
assign output_ready = 1'b1;
always_comb begin
m_axis_tdata_int = current_s_tdata;
m_axis_tkeep_int = current_s_tkeep;
m_axis_tstrb_int = current_s_tstrb;
m_axis_tvalid_int = current_s_tvalid && current_s_tready;
m_axis_tlast_int = current_s_tlast && select_reg == CL_S_COUNT'(S_COUNT-1);
m_axis_tid_int = current_s_tid;
m_axis_tdest_int = current_s_tdest;
m_axis_tuser_int = current_s_tuser;
end
end else begin
// repack
logic [2*DATA_W-1:0] tdata_reg = '0, tdata_next;
logic [2*KEEP_W-1:0] tkeep_reg = '0, tkeep_next;
logic [2*KEEP_W-1:0] tstrb_reg = '0, tstrb_next;
logic [1:0] tvalid_reg = '0, tvalid_next;
logic [1:0] tlast_reg = '0, tlast_next;
logic [ID_W-1:0] tid_reg = '0, tid_next;
logic [DEST_W-1:0] tdest_reg = '0, tdest_next;
logic [USER_W-1:0] tuser_reg = '0, tuser_next;
logic [CL_BYTE_LANES-1:0] offset_reg = '0, offset_next;
logic [CL_BYTE_LANES+1-1:0] current_byte_count;
always_comb begin
current_byte_count = '0;
for (integer k = 0; k < KEEP_W; k = k + 1) begin
if (current_s_tkeep[k]) begin
current_byte_count = (CL_BYTE_LANES+1)'(k+1);
end
end
end
always_comb begin
tdata_next = tdata_reg;
tkeep_next = tkeep_reg;
tstrb_next = tstrb_reg;
tvalid_next = tvalid_reg;
tlast_next = tlast_reg;
tid_next = tid_reg;
tdest_next = tdest_reg;
tuser_next = tuser_reg;
offset_next = offset_reg;
m_axis_tdata_int = tdata_reg[0 +: DATA_W];
m_axis_tkeep_int = tkeep_reg[0 +: KEEP_W];
m_axis_tstrb_int = tstrb_reg[0 +: KEEP_W];
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = tlast_reg[0];
m_axis_tid_int = tid_reg;
m_axis_tdest_int = tdest_reg;
m_axis_tuser_int = tuser_reg;
output_ready = !tlast_reg[1];
if (m_axis_tready_int_reg && (tkeep_reg[KEEP_W-1] || tlast_reg[0])) begin
// shift out full words
tdata_next[0 +: DATA_W] = tdata_reg[DATA_W +: DATA_W];
tkeep_next = {{KEEP_W{1'b0}}, tkeep_reg[KEEP_W +: KEEP_W]};
tstrb_next = {{KEEP_W{1'b0}}, tstrb_reg[KEEP_W +: KEEP_W]};
tvalid_next = {1'b0, tvalid_reg[1]};
tlast_next = {1'b0, tlast_reg[1]};
m_axis_tvalid_int = 1'b1;
end
if (current_s_tvalid && current_s_tready) begin
// store data with offset
tdata_next[offset_reg*BYTE_SIZE +: DATA_W] = current_s_tdata;
tkeep_next[offset_reg*1 +: KEEP_W] = current_s_tkeep;
tstrb_next[offset_reg*1 +: KEEP_W] = current_s_tstrb;
tvalid_next[0] = 1'b1;
tid_next = current_s_tid;
tdest_next = current_s_tdest;
tuser_next = current_s_tuser;
// compute new offset (natural wrapping)
offset_next = offset_reg + CL_BYTE_LANES'(current_byte_count);
if (tkeep_next[KEEP_W +: KEEP_W] != 0) begin
// wrapped to higher word
tvalid_next[1] = 1'b1;
end
if (current_s_tlast && select_reg == CL_S_COUNT'(S_COUNT-1)) begin
// end of frame
offset_next = '0;
if (tkeep_next[KEEP_W +: KEEP_W] != 0) begin
tvalid_next[0] = 1'b1;
tvalid_next[1] = 1'b1;
tlast_next[1] = 1'b1;
output_ready = 1'b0;
end else begin
tvalid_next[0] = 1'b1;
tlast_next[0] = 1'b1;
end
end
end
end
always_ff @(posedge clk) begin
tdata_reg <= tdata_next;
tkeep_reg <= tkeep_next;
tstrb_reg <= tstrb_next;
tvalid_reg <= tvalid_next;
tlast_reg <= tlast_next;
tid_reg <= tid_next;
tdest_reg <= tdest_next;
tuser_reg <= tuser_next;
offset_reg <= offset_next;
if (rst) begin
tvalid_reg <= '0;
offset_reg <= '0;
end
end
end
end
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
logic m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] m_axis_tid_reg = '0;
logic [DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0;
logic temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
logic temp_m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] temp_m_axis_tid_reg = '0;
logic [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
logic [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
logic store_axis_int_to_output;
logic store_axis_int_to_temp;
logic store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = LAST_EN ? m_axis_tlast_reg : 1'b1;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tstrb_reg <= m_axis_tstrb_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tstrb_reg <= temp_m_axis_tstrb_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tstrb_reg <= m_axis_tstrb_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,62 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2021-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
RTL_DIR = ../../rtl
LIB_DIR = ../../lib
TAXI_SRC_DIR = $(LIB_DIR)/taxi/src
DUT = taxi_axis_concat
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += $(RTL_DIR)/$(DUT).sv
VERILOG_SOURCES += $(RTL_DIR)/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_S_COUNT := 4
export PARAM_DATA_W := 8
export PARAM_KEEP_EN := $(shell expr $(PARAM_DATA_W) \> 8 )
export PARAM_KEEP_W := $(shell expr \( $(PARAM_DATA_W) + 7 \) / 8 )
export PARAM_STRB_EN := 0
export PARAM_LAST_EN := 1
export PARAM_ID_EN := 1
export PARAM_ID_W := 8
export PARAM_DEST_EN := 1
export PARAM_DEST_W := 8
export PARAM_USER_EN := 1
export PARAM_USER_W := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,243 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Event
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamFrame, AxiStreamSource, AxiStreamSink
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 10, units="ns").start())
self.source = [AxiStreamSource(AxiStreamBus.from_entity(bus), dut.clk, dut.rst) for bus in dut.s_axis]
self.sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis), dut.clk, dut.rst)
def set_idle_generator(self, generator=None):
if generator:
for source in self.source:
source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
id_count = 2**len(tb.source[0].bus.tid)
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for test_data in itertools.product([payload_data(x) for x in payload_lengths()], repeat=len(tb.source)):
full_data = bytearray()
for p in range(len(tb.source)):
test_frame = AxiStreamFrame(test_data[p])
test_frame.tid = cur_id
test_frame.tdest = cur_id
full_data.extend(test_data[p])
await tb.source[p].send(test_frame)
test_frames.append((cur_id, full_data))
cur_id = (cur_id + 1) % id_count
for cur_id, test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame
assert rx_frame.tid == cur_id
assert rx_frame.tdest == cur_id
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.source[0].byte_lanes
id_count = 2**len(tb.source[0].bus.tid)
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for k in range(128):
full_data = bytearray()
for p in range(len(tb.source)):
length = random.randint(1, byte_lanes*16)
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length))
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id
test_frame.tdest = cur_id
full_data.extend(test_data)
await tb.source[p].send(test_frame)
test_frames.append((cur_id, full_data))
cur_id = (cur_id + 1) % id_count
for cur_id, test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame
assert rx_frame.tid == cur_id
assert rx_frame.tdest == cur_id
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
def size_list():
data_width = len(cocotb.top.m_axis.tdata)
byte_width = data_width // 8
return list(range(1, byte_width*2+1))
def incrementing_payload(length):
return bytearray(itertools.islice(itertools.cycle(range(256)), length))
if cocotb.SIM_NAME:
factory = TestFactory(run_test)
factory.add_option("payload_lengths", [size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.dirname(__file__)
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl'))
lib_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'lib'))
taxi_src_dir = os.path.abspath(os.path.join(lib_dir, 'taxi', 'src'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32])
@pytest.mark.parametrize("s_count", [1, 2, 3, 4])
def test_taxi_axis_concat(request, s_count, data_w):
dut = "taxi_axis_concat"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, f"{dut}.sv"),
os.path.join(rtl_dir, "taxi_axis_if.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['S_COUNT'] = s_count
parameters['DATA_W'] = data_w
parameters['KEEP_EN'] = int(parameters['DATA_W'] > 8)
parameters['KEEP_W'] = (parameters['DATA_W'] + 7) // 8
parameters['STRB_EN'] = 0
parameters['LAST_EN'] = 1
parameters['ID_EN'] = 1
parameters['ID_W'] = 8
parameters['DEST_EN'] = 1
parameters['DEST_W'] = 8
parameters['USER_EN'] = 1
parameters['USER_W'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,74 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream concatenator testbench
*/
module test_taxi_axis_concat #
(
/* verilator lint_off WIDTHTRUNC */
parameter S_COUNT = 4,
parameter DATA_W = 8,
parameter logic KEEP_EN = (DATA_W>8),
parameter KEEP_W = ((DATA_W+7)/8),
parameter logic STRB_EN = 1'b0,
parameter logic LAST_EN = 1'b1,
parameter logic ID_EN = 1'b0,
parameter ID_W = 8,
parameter logic DEST_EN = 1'b0,
parameter DEST_W = 8,
parameter logic USER_EN = 1'b1,
parameter USER_W = 1
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(
.DATA_W(DATA_W),
.KEEP_EN(KEEP_EN),
.KEEP_W(KEEP_W),
.STRB_EN(STRB_EN),
.LAST_EN(LAST_EN),
.ID_EN(ID_EN),
.ID_W(ID_W),
.DEST_EN(DEST_EN),
.DEST_W(DEST_W),
.USER_EN(USER_EN),
.USER_W(USER_W)
) s_axis[S_COUNT](), m_axis();
taxi_axis_concat #(
.S_COUNT(S_COUNT)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4-Stream input (sink)
*/
.s_axis(s_axis),
/*
* AXI4-Stream output (source)
*/
.m_axis(m_axis)
);
endmodule
`resetall