axi: Add AXI crossbar module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-11-11 22:33:31 -08:00
parent 0a4da49c74
commit ccb024f8ce
11 changed files with 2203 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
taxi_axi_crossbar.sv
taxi_axi_crossbar_wr.f
taxi_axi_crossbar_rd.f

View File

@@ -0,0 +1,165 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 crossbar
*/
module taxi_axi_crossbar #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AW channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AW_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface W channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_W_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface B channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_B_REG_TYPE = {S_COUNT{2'd1}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AW channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AW_REG_TYPE = {M_COUNT{2'd1}},
// Master interface W channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_W_REG_TYPE = {M_COUNT{2'd2}},
// Master interface B channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_B_REG_TYPE = {M_COUNT{2'd0}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.wr_slv s_axi_wr[S_COUNT],
taxi_axi_if.rd_slv s_axi_rd[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.wr_mst m_axi_wr[M_COUNT],
taxi_axi_if.rd_mst m_axi_rd[M_COUNT]
);
taxi_axi_crossbar_wr #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.S_THREADS(S_THREADS),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_WR),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AW_REG_TYPE(S_AW_REG_TYPE),
.S_W_REG_TYPE (S_W_REG_TYPE),
.S_B_REG_TYPE (S_B_REG_TYPE)
)
wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interfaces
*/
.s_axi_wr(s_axi_wr),
/*
* AXI master interfaces
*/
.m_axi_wr(m_axi_wr)
);
taxi_axi_crossbar_rd #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.S_THREADS(S_THREADS),
.S_ACCEPT(S_ACCEPT),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_RD),
.M_ISSUE(M_ISSUE),
.M_SECURE(M_SECURE),
.S_AR_REG_TYPE(S_AR_REG_TYPE),
.S_R_REG_TYPE (S_R_REG_TYPE)
)
rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI slave interfaces
*/
.s_axi_rd(s_axi_rd),
/*
* AXI master interfaces
*/
.m_axi_rd(m_axi_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,401 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 crossbar address decode and admission control
*/
module taxi_axi_crossbar_addr #
(
// Slave interface index
parameter S = 0,
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Select signal width
parameter SEL_W = $clog2(M_COUNT),
// Address width in bits for address decoding
parameter ADDR_W = 32,
// ID field width
parameter ID_W = 8,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent unique IDs
parameter S_THREADS = 32'd2,
// Number of concurrent operations
parameter S_ACCEPT = 32'd16,
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Enable write command output
parameter WC_OUTPUT = 0
)
(
input wire logic clk,
input wire logic rst,
/*
* Address input
*/
input wire logic [ID_W-1:0] s_axi_aid,
input wire logic [ADDR_W-1:0] s_axi_aaddr,
input wire logic [2:0] s_axi_aprot,
input wire logic [3:0] s_axi_aqos,
input wire logic s_axi_avalid,
output wire logic s_axi_aready,
/*
* Address output
*/
output wire logic [3:0] m_axi_aregion,
output wire logic [SEL_W-1:0] m_select,
output wire logic m_axi_avalid,
input wire logic m_axi_aready,
/*
* Write command output
*/
output wire logic [SEL_W-1:0] m_wc_select,
output wire logic m_wc_decerr,
output wire logic m_wc_valid,
input wire logic m_wc_ready,
/*
* Reply command output
*/
output wire logic m_rc_decerr,
output wire logic m_rc_valid,
input wire logic m_rc_ready,
/*
* Completion input
*/
input wire logic [ID_W-1:0] s_cpl_id,
input wire logic s_cpl_valid
);
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
localparam S_INT_THREADS = S_THREADS > S_ACCEPT ? S_ACCEPT : S_THREADS;
localparam CL_S_INT_THREADS = $clog2(S_INT_THREADS);
localparam CL_S_ACCEPT = $clog2(S_ACCEPT);
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (M_REGIONS < 1 || M_REGIONS > 16)
$fatal(0, "Error: M_REGIONS must be between 1 and 16 (instance %m)");
if (S_ACCEPT < 1)
$fatal(0, "Error: need at least 1 accept (instance %m)");
if (S_THREADS < 1)
$fatal(0, "Error: need at least 1 thread (instance %m)");
initial begin
if (S_THREADS > S_ACCEPT) begin
$warning("Warning: requested thread count larger than accept count; limiting thread count to accept count (instance %m)");
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < 12 || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
end
$display("Addressing configuration for axi_crossbar_addr instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [0:0]
STATE_IDLE = 1'd0,
STATE_DECODE = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic s_axi_aready_reg = 1'b0, s_axi_aready_next;
logic [3:0] m_axi_aregion_reg = 4'd0, m_axi_aregion_next;
logic [SEL_W-1:0] m_select_reg = '0, m_select_next;
logic m_axi_avalid_reg = 1'b0, m_axi_avalid_next;
logic m_decerr_reg = 1'b0, m_decerr_next;
logic m_wc_valid_reg = 1'b0, m_wc_valid_next;
logic m_rc_valid_reg = 1'b0, m_rc_valid_next;
assign s_axi_aready = s_axi_aready_reg;
assign m_axi_aregion = m_axi_aregion_reg;
assign m_select = m_select_reg;
assign m_axi_avalid = m_axi_avalid_reg;
assign m_wc_select = m_select_reg;
assign m_wc_decerr = m_decerr_reg;
assign m_wc_valid = m_wc_valid_reg;
assign m_rc_decerr = m_decerr_reg;
assign m_rc_valid = m_rc_valid_reg;
logic match;
logic trans_start;
logic trans_complete;
localparam TR_CNT_W = $clog2(S_ACCEPT+1);
logic [TR_CNT_W-1:0] trans_count_reg = 0;
wire trans_limit = trans_count_reg >= TR_CNT_W'(S_ACCEPT) && !trans_complete;
// transfer ID thread tracking
logic [ID_W-1:0] thread_id_reg[S_INT_THREADS-1:0];
logic [SEL_W-1:0] thread_m_reg[S_INT_THREADS-1:0];
logic [3:0] thread_region_reg[S_INT_THREADS-1:0];
logic [$clog2(S_ACCEPT+1)-1:0] thread_count_reg[S_INT_THREADS-1:0];
// TODO fix loop
/* verilator lint_off UNOPTFLAT */
wire [S_INT_THREADS-1:0] thread_active;
wire [S_INT_THREADS-1:0] thread_match;
wire [S_INT_THREADS-1:0] thread_match_dest;
wire [S_INT_THREADS-1:0] thread_cpl_match;
wire [S_INT_THREADS-1:0] thread_trans_start;
wire [S_INT_THREADS-1:0] thread_trans_complete;
for (genvar n = 0; n < S_INT_THREADS; n = n + 1) begin
initial begin
thread_count_reg[n] = '0;
end
assign thread_active[n] = thread_count_reg[n] != 0;
assign thread_match[n] = thread_active[n] && thread_id_reg[n] == s_axi_aid;
assign thread_match_dest[n] = thread_match[n] && thread_m_reg[n] == m_select_next && (M_REGIONS < 2 || thread_region_reg[n] == m_axi_aregion_next);
assign thread_cpl_match[n] = thread_active[n] && thread_id_reg[n] == s_cpl_id;
assign thread_trans_start[n] = (thread_match[n] || (!thread_active[n] && thread_match == 0 && (thread_trans_start & ({S_INT_THREADS{1'b1}} >> (S_INT_THREADS-n))) == 0)) && trans_start;
assign thread_trans_complete[n] = thread_cpl_match[n] && trans_complete;
always_ff @(posedge clk) begin
if (thread_trans_start[n]) begin
thread_id_reg[n] <= s_axi_aid;
thread_m_reg[n] <= m_select_next;
thread_region_reg[n] <= m_axi_aregion_next;
end
if (thread_trans_start[n] && !thread_trans_complete[n]) begin
thread_count_reg[n] <= thread_count_reg[n] + 1;
end else if (!thread_trans_start[n] && thread_trans_complete[n]) begin
thread_count_reg[n] <= thread_count_reg[n] - 1;
end
if (rst) begin
thread_count_reg[n] <= 0;
end
end
end
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
trans_start = 1'b0;
trans_complete = 1'b0;
s_axi_aready_next = 1'b0;
m_axi_aregion_next = m_axi_aregion_reg;
m_select_next = m_select_reg;
m_axi_avalid_next = m_axi_avalid_reg && !m_axi_aready;
m_decerr_next = m_decerr_reg;
m_wc_valid_next = m_wc_valid_reg && !m_wc_ready;
m_rc_valid_next = m_rc_valid_reg && !m_rc_ready;
case (state_reg)
STATE_IDLE: begin
// idle state, store values
s_axi_aready_next = 1'b0;
if (s_axi_avalid && !s_axi_aready) begin
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !s_axi_aprot[1]) && M_CONNECT_INT[i][S] && (s_axi_aaddr >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = SEL_W'(i);
m_axi_aregion_next = 4'(j);
match = 1'b1;
end
end
end
if (match) begin
// address decode successful
if (!trans_limit && (thread_match_dest != 0 || (!(&thread_active) && thread_match == 0))) begin
// transaction limit not reached
m_axi_avalid_next = 1'b1;
m_decerr_next = 1'b0;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b0;
trans_start = 1'b1;
state_next = STATE_DECODE;
end else begin
// transaction limit reached; block in idle
state_next = STATE_IDLE;
end
end else begin
// decode error
m_axi_avalid_next = 1'b0;
m_decerr_next = 1'b1;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
if (!m_axi_avalid_next && (!m_wc_valid_next || !WC_OUTPUT) && !m_rc_valid_next) begin
s_axi_aready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DECODE;
end
end
endcase
// manage completions
trans_complete = s_cpl_valid;
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axi_aready_reg <= s_axi_aready_next;
m_axi_avalid_reg <= m_axi_avalid_next;
m_wc_valid_reg <= m_wc_valid_next;
m_rc_valid_reg <= m_rc_valid_next;
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
m_axi_aregion_reg <= m_axi_aregion_next;
m_select_reg <= m_select_next;
m_decerr_reg <= m_decerr_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_aready_reg <= 1'b0;
m_axi_avalid_reg <= 1'b0;
m_wc_valid_reg <= 1'b0;
m_rc_valid_reg <= 1'b0;
trans_count_reg <= 0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,6 @@
taxi_axi_crossbar_rd.sv
taxi_axi_crossbar_addr.sv
taxi_axi_register_rd.sv
taxi_axi_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,519 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 crossbar (read)
*/
module taxi_axi_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.rd_slv s_axi_rd[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.rd_mst m_axi_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axi_rd[0].DATA_W;
localparam S_ADDR_W = s_axi_rd[0].ADDR_W;
localparam STRB_W = s_axi_rd[0].STRB_W;
localparam S_ID_W = s_axi_rd[0].ID_W;
localparam M_ID_W = m_axi_rd[0].ID_W;
localparam logic ARUSER_EN = s_axi_rd[0].ARUSER_EN && m_axi_rd[0].ARUSER_EN;
localparam ARUSER_W = s_axi_rd[0].ARUSER_W;
localparam logic RUSER_EN = s_axi_rd[0].RUSER_EN && m_axi_rd[0].RUSER_EN;
localparam RUSER_W = s_axi_rd[0].RUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam M_COUNT_P1 = M_COUNT+1;
localparam CL_M_COUNT_P1 = $clog2(M_COUNT_P1);
localparam [S_COUNT-1:0][31:0] S_THREADS_INT = S_THREADS;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axi_rd[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axi_rd[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_rd[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
if (M_ID_W < S_ID_W+$clog2(S_COUNT))
$fatal(0, "Error: M_ID_W must be at least $clog2(S_COUNT) larger than S_ID_W (instance %m)");
wire [S_ID_W-1:0] int_s_axi_arid[S_COUNT];
wire [ADDR_W-1:0] int_s_axi_araddr[S_COUNT];
wire [7:0] int_s_axi_arlen[S_COUNT];
wire [2:0] int_s_axi_arsize[S_COUNT];
wire [1:0] int_s_axi_arburst[S_COUNT];
wire int_s_axi_arlock[S_COUNT];
wire [3:0] int_s_axi_arcache[S_COUNT];
wire [2:0] int_s_axi_arprot[S_COUNT];
wire [3:0] int_s_axi_arqos[S_COUNT];
wire [3:0] int_s_axi_arregion[S_COUNT];
wire [ARUSER_W-1:0] int_s_axi_aruser[S_COUNT];
logic [M_COUNT-1:0] int_axi_arvalid[S_COUNT];
logic [S_COUNT-1:0] int_axi_arready[M_COUNT];
wire [M_ID_W-1:0] int_m_axi_rid[M_COUNT];
wire [DATA_W-1:0] int_m_axi_rdata[M_COUNT];
wire [1:0] int_m_axi_rresp[M_COUNT];
wire int_m_axi_rlast[M_COUNT];
wire [RUSER_W-1:0] int_m_axi_ruser[M_COUNT];
logic [S_COUNT-1:0] int_axi_rvalid[M_COUNT];
logic [M_COUNT-1:0] int_axi_rready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axi_if #(
.DATA_W(s_axi_rd[0].DATA_W),
.ADDR_W(s_axi_rd[0].ADDR_W),
.STRB_W(s_axi_rd[0].STRB_W),
.ID_W(s_axi_rd[0].ID_W),
.ARUSER_EN(s_axi_rd[0].ARUSER_EN),
.ARUSER_W(s_axi_rd[0].ARUSER_W),
.RUSER_EN(s_axi_rd[0].RUSER_EN),
.RUSER_W(s_axi_rd[0].RUSER_W)
) int_axi();
// S side register
taxi_axi_register_rd #(
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_rd(s_axi_rd[m]),
/*
* AXI4 master interface
*/
.m_axi_rd(int_axi)
);
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axi_avalid;
wire m_axi_aready;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
wire [S_ID_W-1:0] s_cpl_id;
wire s_cpl_valid;
taxi_axi_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.ID_W(S_ID_W),
.S_THREADS(S_THREADS_INT[m]),
.S_ACCEPT(S_ACCEPT_INT[m]),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axi_aid(int_axi.arid),
.s_axi_aaddr(int_axi.araddr),
.s_axi_aprot(int_axi.arprot),
.s_axi_aqos(int_axi.arqos),
.s_axi_avalid(int_axi.arvalid),
.s_axi_aready(int_axi.arready),
/*
* Address output
*/
.m_axi_aregion(int_s_axi_arregion[m]),
.m_select(a_select),
.m_axi_avalid(m_axi_avalid),
.m_axi_aready(m_axi_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready),
/*
* Completion input
*/
.s_cpl_id(s_cpl_id),
.s_cpl_valid(s_cpl_valid)
);
assign int_s_axi_arid[m] = int_axi.arid;
assign int_s_axi_araddr[m] = int_axi.araddr;
assign int_s_axi_arlen[m] = int_axi.arlen;
assign int_s_axi_arsize[m] = int_axi.arsize;
assign int_s_axi_arburst[m] = int_axi.arburst;
assign int_s_axi_arlock[m] = int_axi.arlock;
assign int_s_axi_arcache[m] = int_axi.arcache;
assign int_s_axi_arprot[m] = int_axi.arprot;
assign int_s_axi_arqos[m] = int_axi.arqos;
assign int_s_axi_aruser[m] = int_axi.aruser;
always_comb begin
int_axi_arvalid[m] = '0;
int_axi_arvalid[m][a_select] = m_axi_avalid;
end
assign m_axi_aready = int_axi_arready[a_select][m];
// decode error handling
logic [S_ID_W-1:0] decerr_m_axi_rid_reg = '0, decerr_m_axi_rid_next;
logic decerr_m_axi_rlast_reg = 1'b0, decerr_m_axi_rlast_next;
logic decerr_m_axi_rvalid_reg = 1'b0, decerr_m_axi_rvalid_next;
wire decerr_m_axi_rready;
logic [7:0] decerr_len_reg = 8'd0, decerr_len_next;
assign m_rc_ready = !decerr_m_axi_rvalid_reg;
always_comb begin
decerr_len_next = decerr_len_reg;
decerr_m_axi_rid_next = decerr_m_axi_rid_reg;
decerr_m_axi_rlast_next = decerr_m_axi_rlast_reg;
decerr_m_axi_rvalid_next = decerr_m_axi_rvalid_reg;
if (decerr_m_axi_rvalid_reg) begin
if (decerr_m_axi_rready) begin
if (decerr_len_reg != 0) begin
decerr_len_next = decerr_len_reg-1;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end else begin
decerr_m_axi_rvalid_next = 1'b0;
end
end
end else if (m_rc_valid && m_rc_ready) begin
decerr_len_next = int_axi.arlen;
decerr_m_axi_rid_next = int_axi.arid;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end
end
always_ff @(posedge clk) begin
decerr_m_axi_rvalid_reg <= decerr_m_axi_rvalid_next;
decerr_m_axi_rid_reg <= decerr_m_axi_rid_next;
decerr_m_axi_rlast_reg <= decerr_m_axi_rlast_next;
decerr_len_reg <= decerr_len_next;
if (rst) begin
decerr_m_axi_rvalid_reg <= 1'b0;
end
end
// read response arbitration
wire [M_COUNT_P1-1:0] r_req;
wire [M_COUNT_P1-1:0] r_ack;
wire [M_COUNT_P1-1:0] r_grant;
wire r_grant_valid;
wire [CL_M_COUNT_P1-1:0] r_grant_index;
taxi_arbiter #(
.PORTS(M_COUNT_P1),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
r_arb_inst (
.clk(clk),
.rst(rst),
.req(r_req),
.ack(r_ack),
.grant(r_grant),
.grant_valid(r_grant_valid),
.grant_index(r_grant_index)
);
// read response mux
always_comb begin
if (r_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1)) begin
int_axi.rid = decerr_m_axi_rid_reg;
int_axi.rdata = '0;
int_axi.rresp = 2'b11;
int_axi.rlast = decerr_m_axi_rlast_reg;
int_axi.ruser = '0;
int_axi.rvalid = decerr_m_axi_rvalid_reg & r_grant_valid;
end else begin
int_axi.rid = S_ID_W'(int_m_axi_rid[r_grant_index[CL_M_COUNT_INT-1:0]]);
int_axi.rdata = int_m_axi_rdata[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rresp = int_m_axi_rresp[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rlast = int_m_axi_rlast[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.ruser = int_m_axi_ruser[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rvalid = int_axi_rvalid[r_grant_index[CL_M_COUNT_INT-1:0]][m] & r_grant_valid;
end
end
always_comb begin
int_axi_rready[m] = '0;
int_axi_rready[m][r_grant_index[CL_M_COUNT_INT-1:0]] = r_grant_valid && int_axi.rready;
end
assign decerr_m_axi_rready = (r_grant_valid && int_axi.rready) && (r_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1));
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign r_req[n] = int_axi_rvalid[n][m] && !r_grant[n];
assign r_ack[n] = r_grant_valid && int_axi_rvalid[n][m] && int_axi.rlast && int_axi.rready;
end
assign r_req[M_COUNT_P1-1] = decerr_m_axi_rvalid_reg && !r_grant[M_COUNT_P1-1];
assign r_ack[M_COUNT_P1-1] = r_grant_valid && decerr_m_axi_rvalid_reg && decerr_m_axi_rlast_reg && int_axi.rready;
assign s_cpl_id = int_axi.rid;
assign s_cpl_valid = int_axi.rvalid && int_axi.rready && int_axi.rlast;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axi_if #(
.DATA_W(m_axi_rd[0].DATA_W),
.ADDR_W(m_axi_rd[0].ADDR_W),
.STRB_W(m_axi_rd[0].STRB_W),
.ID_W(m_axi_rd[0].ID_W),
.ARUSER_EN(m_axi_rd[0].ARUSER_EN),
.ARUSER_W(m_axi_rd[0].ARUSER_W),
.RUSER_EN(m_axi_rd[0].RUSER_EN),
.RUSER_W(m_axi_rd[0].RUSER_W)
) int_axi();
// in-flight transaction count
wire trans_start;
wire trans_complete;
localparam TR_CNT_W = $clog2(M_ISSUE_INT[n]+1);
logic [TR_CNT_W-1:0] trans_count_reg = '0;
wire trans_limit = trans_count_reg >= TR_CNT_W'(M_ISSUE_INT[n]) && !trans_complete;
always_ff @(posedge clk) begin
if (rst) begin
trans_count_reg <= 0;
end else begin
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
end
end
// address arbitration
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
if (S_COUNT > 1) begin
assign int_axi.arid = {a_grant_index, int_s_axi_arid[a_grant_index]};
end else begin
assign int_axi.arid = int_s_axi_arid[a_grant_index];
end
assign int_axi.araddr = int_s_axi_araddr[a_grant_index];
assign int_axi.arlen = int_s_axi_arlen[a_grant_index];
assign int_axi.arsize = int_s_axi_arsize[a_grant_index];
assign int_axi.arburst = int_s_axi_arburst[a_grant_index];
assign int_axi.arlock = int_s_axi_arlock[a_grant_index];
assign int_axi.arcache = int_s_axi_arcache[a_grant_index];
assign int_axi.arprot = int_s_axi_arprot[a_grant_index];
assign int_axi.arqos = int_s_axi_arqos[a_grant_index];
assign int_axi.arregion = int_s_axi_arregion[a_grant_index];
assign int_axi.aruser = int_s_axi_aruser[a_grant_index];
assign int_axi.arvalid = int_axi_arvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axi_arready[n] = '0;
int_axi_arready[n][a_grant_index] = a_grant_valid && int_axi.arready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axi_arvalid[m][n] && !a_grant_valid && !trans_limit;
assign a_ack[m] = a_grant[m] && int_axi_arvalid[m][n] && int_axi.arready;
end
assign trans_start = int_axi.arvalid && int_axi.arready && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT_INT-1:0] r_select = CL_S_COUNT_INT'(int_axi.rid >> S_ID_W);
assign int_m_axi_rid[n] = int_axi.rid;
assign int_m_axi_rdata[n] = int_axi.rdata;
assign int_m_axi_rresp[n] = int_axi.rresp;
assign int_m_axi_rlast[n] = int_axi.rlast;
assign int_m_axi_ruser[n] = int_axi.ruser;
always_comb begin
int_axi_rvalid[n] = '0;
int_axi_rvalid[n][r_select] = int_axi.rvalid;
end
assign int_axi.rready = int_axi_rready[r_select][n];
assign trans_complete = int_axi.rvalid && int_axi.rready && int_axi.rlast;
// M side register
taxi_axi_register_rd #(
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_rd(int_axi),
/*
* AXI4 master interface
*/
.m_axi_rd(m_axi_rd[n])
);
end // m_ifaces
endmodule
`resetall

View File

@@ -0,0 +1,6 @@
taxi_axi_crossbar_wr.sv
taxi_axi_crossbar_addr.sv
taxi_axi_register_wr.sv
taxi_axi_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,611 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 crossbar (write)
*/
module taxi_axi_crossbar_wr #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AW channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AW_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface W channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_W_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface B channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_B_REG_TYPE = {S_COUNT{2'd1}},
// Master interface AW channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AW_REG_TYPE = {M_COUNT{2'd1}},
// Master interface W channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_W_REG_TYPE = {M_COUNT{2'd2}},
// Master interface B channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_B_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.wr_slv s_axi_wr[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.wr_mst m_axi_wr[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axi_wr[0].DATA_W;
localparam S_ADDR_W = s_axi_wr[0].ADDR_W;
localparam STRB_W = s_axi_wr[0].STRB_W;
localparam S_ID_W = s_axi_wr[0].ID_W;
localparam M_ID_W = m_axi_wr[0].ID_W;
localparam logic AWUSER_EN = s_axi_wr[0].AWUSER_EN && m_axi_wr[0].AWUSER_EN;
localparam AWUSER_W = s_axi_wr[0].AWUSER_W;
localparam logic WUSER_EN = s_axi_wr[0].WUSER_EN && m_axi_wr[0].WUSER_EN;
localparam WUSER_W = s_axi_wr[0].WUSER_W;
localparam logic BUSER_EN = s_axi_wr[0].BUSER_EN && m_axi_wr[0].BUSER_EN;
localparam BUSER_W = s_axi_wr[0].BUSER_W;
if (m_axi_wr.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_wr.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam M_COUNT_P1 = M_COUNT+1;
localparam CL_M_COUNT_P1 = $clog2(M_COUNT_P1);
localparam [S_COUNT-1:0][31:0] S_THREADS_INT = S_THREADS;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axi_wr[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axi_wr[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_wr[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
if (M_ID_W < S_ID_W+$clog2(S_COUNT))
$fatal(0, "Error: M_ID_W must be at least $clog2(S_COUNT) larger than S_ID_W (instance %m)");
wire [S_ID_W-1:0] int_s_axi_awid[S_COUNT];
wire [ADDR_W-1:0] int_s_axi_awaddr[S_COUNT];
wire [7:0] int_s_axi_awlen[S_COUNT];
wire [2:0] int_s_axi_awsize[S_COUNT];
wire [1:0] int_s_axi_awburst[S_COUNT];
wire int_s_axi_awlock[S_COUNT];
wire [3:0] int_s_axi_awcache[S_COUNT];
wire [2:0] int_s_axi_awprot[S_COUNT];
wire [3:0] int_s_axi_awqos[S_COUNT];
wire [3:0] int_s_axi_awregion[S_COUNT];
wire [AWUSER_W-1:0] int_s_axi_awuser[S_COUNT];
logic [M_COUNT-1:0] int_axi_awvalid[S_COUNT];
logic [S_COUNT-1:0] int_axi_awready[M_COUNT];
wire [DATA_W-1:0] int_s_axi_wdata[S_COUNT];
wire [STRB_W-1:0] int_s_axi_wstrb[S_COUNT];
wire int_s_axi_wlast[S_COUNT];
wire [WUSER_W-1:0] int_s_axi_wuser[S_COUNT];
logic [M_COUNT-1:0] int_axi_wvalid[S_COUNT];
logic [S_COUNT-1:0] int_axi_wready[M_COUNT];
wire [M_ID_W-1:0] int_m_axi_bid[M_COUNT];
wire [1:0] int_m_axi_bresp[M_COUNT];
wire [BUSER_W-1:0] int_m_axi_buser[M_COUNT];
logic [S_COUNT-1:0] int_axi_bvalid[M_COUNT];
logic [M_COUNT-1:0] int_axi_bready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axi_if #(
.DATA_W(s_axi_wr[0].DATA_W),
.ADDR_W(s_axi_wr[0].ADDR_W),
.STRB_W(s_axi_wr[0].STRB_W),
.ID_W(s_axi_wr[0].ID_W),
.AWUSER_EN(s_axi_wr[0].AWUSER_EN),
.AWUSER_W(s_axi_wr[0].AWUSER_W),
.WUSER_EN(s_axi_wr[0].WUSER_EN),
.WUSER_W(s_axi_wr[0].WUSER_W),
.BUSER_EN(s_axi_wr[0].BUSER_EN),
.BUSER_W(s_axi_wr[0].BUSER_W)
) int_axi();
// S side register
taxi_axi_register_wr #(
.AW_REG_TYPE(S_AW_REG_TYPE[m*2 +: 2]),
.W_REG_TYPE(S_W_REG_TYPE[m*2 +: 2]),
.B_REG_TYPE(S_B_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_wr(s_axi_wr[m]),
/*
* AXI4 master interface
*/
.m_axi_wr(int_axi)
);
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axi_avalid;
wire m_axi_aready;
wire [CL_M_COUNT_INT-1:0] m_wc_select;
wire m_wc_decerr;
wire m_wc_valid;
wire m_wc_ready;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
wire [S_ID_W-1:0] s_cpl_id;
wire s_cpl_valid;
taxi_axi_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.ID_W(S_ID_W),
.S_THREADS(S_THREADS_INT[m]),
.S_ACCEPT(S_ACCEPT_INT[m]),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(1)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axi_aid(int_axi.awid),
.s_axi_aaddr(int_axi.awaddr),
.s_axi_aprot(int_axi.awprot),
.s_axi_aqos(int_axi.awqos),
.s_axi_avalid(int_axi.awvalid),
.s_axi_aready(int_axi.awready),
/*
* Address output
*/
.m_axi_aregion(int_s_axi_awregion[m]),
.m_select(a_select),
.m_axi_avalid(m_axi_avalid),
.m_axi_aready(m_axi_aready),
/*
* Write command output
*/
.m_wc_select(m_wc_select),
.m_wc_decerr(m_wc_decerr),
.m_wc_valid(m_wc_valid),
.m_wc_ready(m_wc_ready),
/*
* Response command output
*/
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready),
/*
* Completion input
*/
.s_cpl_id(s_cpl_id),
.s_cpl_valid(s_cpl_valid)
);
assign int_s_axi_awid[m] = int_axi.awid;
assign int_s_axi_awaddr[m] = int_axi.awaddr;
assign int_s_axi_awlen[m] = int_axi.awlen;
assign int_s_axi_awsize[m] = int_axi.awsize;
assign int_s_axi_awburst[m] = int_axi.awburst;
assign int_s_axi_awlock[m] = int_axi.awlock;
assign int_s_axi_awcache[m] = int_axi.awcache;
assign int_s_axi_awprot[m] = int_axi.awprot;
assign int_s_axi_awqos[m] = int_axi.awqos;
assign int_s_axi_awuser[m] = int_axi.awuser;
always_comb begin
int_axi_awvalid[m] = '0;
int_axi_awvalid[m][a_select] = m_axi_avalid;
end
assign m_axi_aready = int_axi_awready[a_select][m];
// write command handling
logic [CL_M_COUNT_INT-1:0] w_select_reg = '0, w_select_next;
logic w_drop_reg = 1'b0, w_drop_next;
logic w_select_valid_reg = 1'b0, w_select_valid_next;
assign m_wc_ready = !w_select_valid_reg;
always_comb begin
w_select_next = w_select_reg;
w_drop_next = w_drop_reg && !(int_axi.wvalid && int_axi.wready && int_axi.wlast);
w_select_valid_next = w_select_valid_reg && !(int_axi.wvalid && int_axi.wready && int_axi.wlast);
if (m_wc_valid && !w_select_valid_reg) begin
w_select_next = m_wc_select;
w_drop_next = m_wc_decerr;
w_select_valid_next = m_wc_valid;
end
end
always_ff @(posedge clk) begin
w_select_valid_reg <= w_select_valid_next;
w_select_reg <= w_select_next;
w_drop_reg <= w_drop_next;
if (rst) begin
w_select_valid_reg <= 1'b0;
end
end
// write data forwarding
assign int_s_axi_wdata[m] = int_axi.wdata;
assign int_s_axi_wstrb[m] = int_axi.wstrb;
assign int_s_axi_wlast[m] = int_axi.wlast;
assign int_s_axi_wuser[m] = int_axi.wuser;
always_comb begin
int_axi_wvalid[m] = '0;
int_axi_wvalid[m][w_select_reg] = int_axi.wvalid && w_select_valid_reg && !w_drop_reg;
end
assign int_axi.wready = int_axi_wready[w_select_reg][m] || w_drop_reg;
// decode error handling
logic [S_ID_W-1:0] decerr_m_axi_bid_reg = '0, decerr_m_axi_bid_next;
logic decerr_m_axi_bvalid_reg = 1'b0, decerr_m_axi_bvalid_next;
wire decerr_m_axi_bready;
assign m_rc_ready = !decerr_m_axi_bvalid_reg;
always_comb begin
decerr_m_axi_bid_next = decerr_m_axi_bid_reg;
decerr_m_axi_bvalid_next = decerr_m_axi_bvalid_reg;
if (decerr_m_axi_bvalid_reg) begin
if (decerr_m_axi_bready) begin
decerr_m_axi_bvalid_next = 1'b0;
end
end else if (m_rc_valid && m_rc_ready) begin
decerr_m_axi_bid_next = int_s_axi_awid[m];
decerr_m_axi_bvalid_next = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
decerr_m_axi_bvalid_reg <= 1'b0;
end else begin
decerr_m_axi_bvalid_reg <= decerr_m_axi_bvalid_next;
end
decerr_m_axi_bid_reg <= decerr_m_axi_bid_next;
end
// write response arbitration
wire [M_COUNT_P1-1:0] b_req;
wire [M_COUNT_P1-1:0] b_ack;
wire [M_COUNT_P1-1:0] b_grant;
wire b_grant_valid;
wire [CL_M_COUNT_P1-1:0] b_grant_index;
taxi_arbiter #(
.PORTS(M_COUNT_P1),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
b_arb_inst (
.clk(clk),
.rst(rst),
.req(b_req),
.ack(b_ack),
.grant(b_grant),
.grant_valid(b_grant_valid),
.grant_index(b_grant_index)
);
// write response mux
always_comb begin
if (b_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1)) begin
int_axi.bid = decerr_m_axi_bid_reg;
int_axi.bresp = 2'b11;
int_axi.buser = '0;
int_axi.bvalid = decerr_m_axi_bvalid_reg & b_grant_valid;
end else begin
int_axi.bid = S_ID_W'(int_m_axi_bid[b_grant_index[CL_M_COUNT_INT-1:0]]);
int_axi.bresp = int_m_axi_bresp[b_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.buser = int_m_axi_buser[b_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.bvalid = int_axi_bvalid[b_grant_index[CL_M_COUNT_INT-1:0]][m] & b_grant_valid;
end
end
always_comb begin
int_axi_bready[m] = '0;
int_axi_bready[m][b_grant_index[CL_M_COUNT_INT-1:0]] = b_grant_valid && int_axi.bready;
end
assign decerr_m_axi_bready = (b_grant_valid && int_axi.bready) && (b_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1));
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign b_req[n] = int_axi_bvalid[n][m] && !b_grant[n];
assign b_ack[n] = b_grant[n] && int_axi_bvalid[n][m] && int_axi.bready;
end
assign b_req[M_COUNT_P1-1] = decerr_m_axi_bvalid_reg && !b_grant[M_COUNT_P1-1];
assign b_ack[M_COUNT_P1-1] = b_grant[M_COUNT_P1-1] && decerr_m_axi_bvalid_reg && int_axi.bready;
assign s_cpl_id = int_axi.bid;
assign s_cpl_valid = int_axi.bvalid && int_axi.bready;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axi_if #(
.DATA_W(m_axi_wr[0].DATA_W),
.ADDR_W(m_axi_wr[0].ADDR_W),
.STRB_W(m_axi_wr[0].STRB_W),
.ID_W(m_axi_wr[0].ID_W),
.AWUSER_EN(m_axi_wr[0].AWUSER_EN),
.AWUSER_W(m_axi_wr[0].AWUSER_W),
.WUSER_EN(m_axi_wr[0].WUSER_EN),
.WUSER_W(m_axi_wr[0].WUSER_W),
.BUSER_EN(m_axi_wr[0].BUSER_EN),
.BUSER_W(m_axi_wr[0].BUSER_W)
) int_axi();
// in-flight transaction count
wire trans_start;
wire trans_complete;
localparam TR_CNT_W = $clog2(M_ISSUE_INT[n]+1);
logic [TR_CNT_W-1:0] trans_count_reg = '0;
wire trans_limit = trans_count_reg >= TR_CNT_W'(M_ISSUE_INT[n]) && !trans_complete;
always_ff @(posedge clk) begin
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
if (rst) begin
trans_count_reg <= 0;
end
end
// address arbitration
logic [CL_S_COUNT_INT-1:0] w_select_reg = '0, w_select_next;
logic w_select_valid_reg = 1'b0, w_select_valid_next;
logic w_select_new_reg = 1'b0, w_select_new_next;
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
if (S_COUNT > 1) begin
assign int_axi.awid = {a_grant_index, int_s_axi_awid[a_grant_index]};
end else begin
assign int_axi.awid = int_s_axi_awid[a_grant_index];
end
assign int_axi.awaddr = int_s_axi_awaddr[a_grant_index];
assign int_axi.awlen = int_s_axi_awlen[a_grant_index];
assign int_axi.awsize = int_s_axi_awsize[a_grant_index];
assign int_axi.awburst = int_s_axi_awburst[a_grant_index];
assign int_axi.awlock = int_s_axi_awlock[a_grant_index];
assign int_axi.awcache = int_s_axi_awcache[a_grant_index];
assign int_axi.awprot = int_s_axi_awprot[a_grant_index];
assign int_axi.awqos = int_s_axi_awqos[a_grant_index];
assign int_axi.awregion = int_s_axi_awregion[a_grant_index];
assign int_axi.awuser = int_s_axi_awuser[a_grant_index];
assign int_axi.awvalid = int_axi_awvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axi_awready[n] = '0;
int_axi_awready[n][a_grant_index] = a_grant_valid && int_axi.awready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axi_awvalid[m][n] && !a_grant_valid && !trans_limit && !w_select_valid_next;
assign a_ack[m] = a_grant[m] && int_axi_awvalid[m][n] && int_axi.awready;
end
assign trans_start = int_axi.awvalid && int_axi.awready && a_grant_valid;
// write data mux
assign int_axi.wdata = int_s_axi_wdata[w_select_reg];
assign int_axi.wstrb = int_s_axi_wstrb[w_select_reg];
assign int_axi.wlast = int_s_axi_wlast[w_select_reg];
assign int_axi.wuser = int_s_axi_wuser[w_select_reg];
assign int_axi.wvalid = int_axi_wvalid[w_select_reg][n] && w_select_valid_reg;
always_comb begin
int_axi_wready[n] = '0;
int_axi_wready[n][w_select_reg] = w_select_valid_reg && int_axi.wready;
end
// write data routing
always_comb begin
w_select_next = w_select_reg;
w_select_valid_next = w_select_valid_reg && !(int_axi.wvalid && int_axi.wready && int_axi.wlast);
w_select_new_next = w_select_new_reg || a_grant_valid == 0 || a_ack != 0;
if (a_grant_valid && !w_select_valid_reg && w_select_new_reg) begin
w_select_next = a_grant_index;
w_select_valid_next = a_grant_valid;
w_select_new_next = 1'b0;
end
end
always_ff @(posedge clk) begin
w_select_reg <= w_select_next;
w_select_valid_reg <= w_select_valid_next;
w_select_new_reg <= w_select_new_next;
if (rst) begin
w_select_valid_reg <= 1'b0;
w_select_new_reg <= 1'b1;
end
end
// write response forwarding
wire [CL_S_COUNT_INT-1:0] b_select = CL_S_COUNT_INT'(int_axi.bid >> S_ID_W);
assign int_m_axi_bid[n] = int_axi.bid;
assign int_m_axi_bresp[n] = int_axi.bresp;
assign int_m_axi_buser[n] = int_axi.buser;
always_comb begin
int_axi_bvalid[n] = '0;
int_axi_bvalid[n][b_select] = int_axi.bvalid;
end
assign int_axi.bready = int_axi_bready[b_select][n];
assign trans_complete = int_axi.bvalid && int_axi.bready;
// M side register
taxi_axi_register_wr #(
.AW_REG_TYPE(M_AW_REG_TYPE[n*2 +: 2]),
.W_REG_TYPE(M_W_REG_TYPE[n*2 +: 2]),
.B_REG_TYPE(M_B_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_wr(int_axi),
/*
* AXI4 master interface
*/
.m_axi_wr(m_axi_wr[n])
);
end // m_ifaces
endmodule
`resetall