example: Add example design for Arty A7

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-17 00:13:06 -08:00
parent c6ca108392
commit dd2a0d1bf3
9 changed files with 1151 additions and 0 deletions

View File

@@ -0,0 +1,290 @@
// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga #
(
// simulation (set to avoid vendor primitives)
parameter logic SIM = 1'b0,
// vendor ("GENERIC", "XILINX", "ALTERA")
parameter VENDOR = "XILINX",
// device family
parameter FAMILY = "artix7"
)
(
/*
* Clock: 100MHz
* Reset: Push button, active low
*/
input wire logic clk,
input wire logic reset_n,
/*
* GPIO
*/
input wire logic [3:0] sw,
input wire logic [3:0] btn,
output wire logic led0_r,
output wire logic led0_g,
output wire logic led0_b,
output wire logic led1_r,
output wire logic led1_g,
output wire logic led1_b,
output wire logic led2_r,
output wire logic led2_g,
output wire logic led2_b,
output wire logic led3_r,
output wire logic led3_g,
output wire logic led3_b,
output wire logic led4,
output wire logic led5,
output wire logic led6,
output wire logic led7,
/*
* UART: 115200 bps, 8N1
*/
input wire logic uart_rxd,
output wire logic uart_txd,
/*
* Ethernet: 100BASE-T MII
*/
output wire logic phy_ref_clk,
input wire logic phy_rx_clk,
input wire logic [3:0] phy_rxd,
input wire logic phy_rx_dv,
input wire logic phy_rx_er,
input wire logic phy_tx_clk,
output wire logic [3:0] phy_txd,
output wire logic phy_tx_en,
input wire logic phy_col,
input wire logic phy_crs,
output wire logic phy_reset_n
);
// Clock and reset
wire clk_ibufg;
// Internal 125 MHz clock
wire clk_mmcm_out;
wire clk_int;
wire rst_int;
wire mmcm_rst = ~reset_n;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFG
clk_ibufg_inst(
.I(clk),
.O(clk_ibufg)
);
wire clk_25mhz_mmcm_out;
wire clk_25mhz_int;
// MMCM instance
MMCME2_BASE #(
// 100 MHz input
.CLKIN1_PERIOD(10.0),
.REF_JITTER1(0.010),
// 100 MHz input / 1 = 100 MHz PFD (range 10 MHz to 550 MHz)
.DIVCLK_DIVIDE(1),
// 100 MHz PFD * 10 = 1000 MHz VCO (range 600 MHz to 1200 MHz)
.CLKFBOUT_MULT_F(10),
.CLKFBOUT_PHASE(0),
// 1250 MHz VCO / 8 = 128 MHz, 0 degrees
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// 1250 MHz VCO / 40 = 25 MHz, 0 degrees
.CLKOUT1_DIVIDE(40),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
// Not used
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// 100 MHz input
.CLKIN1(clk_ibufg),
// direct clkfb feedback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(clk_mmcm_out),
.CLKOUT0B(),
// 25 MHz, 0 degrees
.CLKOUT1(clk_25mhz_mmcm_out),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(mmcm_rst),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm_locked)
);
BUFG
clk_bufg_inst (
.I(clk_mmcm_out),
.O(clk_int)
);
BUFG
clk_25mhz_bufg_inst (
.I(clk_25mhz_mmcm_out),
.O(clk_25mhz_int)
);
taxi_sync_reset #(
.N(4)
)
sync_reset_inst (
.clk(clk_int),
.rst(~mmcm_locked),
.out(rst_int)
);
// GPIO
wire [3:0] btn_int;
wire [3:0] sw_int;
taxi_debounce_switch #(
.WIDTH(8),
.N(4),
.RATE(125000)
)
debounce_switch_inst (
.clk(clk_int),
.rst(rst_int),
.in({btn,
sw}),
.out({btn_int,
sw_int})
);
wire uart_rxd_int;
taxi_sync_signal #(
.WIDTH(1),
.N(2)
)
sync_signal_inst (
.clk(clk_int),
.in({uart_rxd}),
.out({uart_rxd_int})
);
assign phy_ref_clk = clk_25mhz_int;
fpga_core #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY)
)
core_inst (
/*
* Clock: 125MHz
* Synchronous reset
*/
.clk(clk_int),
.rst(rst_int),
/*
* GPIO
*/
.btn(btn_int),
.sw(sw_int),
.led0_r(led0_r),
.led0_g(led0_g),
.led0_b(led0_b),
.led1_r(led1_r),
.led1_g(led1_g),
.led1_b(led1_b),
.led2_r(led2_r),
.led2_g(led2_g),
.led2_b(led2_b),
.led3_r(led3_r),
.led3_g(led3_g),
.led3_b(led3_b),
.led4(led4),
.led5(led5),
.led6(led6),
.led7(led7),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
/*
* Ethernet: 100BASE-T MII
*/
.phy_rx_clk(phy_rx_clk),
.phy_rxd(phy_rxd),
.phy_rx_dv(phy_rx_dv),
.phy_rx_er(phy_rx_er),
.phy_tx_clk(phy_tx_clk),
.phy_txd(phy_txd),
.phy_tx_en(phy_tx_en),
.phy_col(phy_col),
.phy_crs(phy_crs),
.phy_reset_n(phy_reset_n)
);
endmodule
`resetall