hip: Add fractional MMCM wrapper for generating offset clocks for DDMTD

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-03-13 21:00:09 -07:00
parent ebeadee172
commit eacae099bf

View File

@@ -0,0 +1,194 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2024-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Fractional MMCM
*/
module taxi_mmcm_frac #(
parameter MMCM_INPUT_CLK_PERIOD = 8.0,
parameter MMCM_INPUT_REF_JITTER = 0.010,
parameter MMCM_INPUT_DIV = 1,
parameter MMCM_MULT = 8,
parameter MMCM_OUTPUT_DIV = MMCM_MULT,
parameter OFFSET_NUM = 1,
parameter OFFSET_DENOM = 65536
)
(
input wire input_clk,
input wire input_rst,
output wire output_clk,
output wire output_offset_clk,
output wire locked
);
// 1 tap is 1/56th of the VCO period
// to shift 1 full cycle of the output clock, 56*MMCM_OUTPUT_DIV shifts are required
localparam DIR = OFFSET_NUM >= 0;
localparam NUM_1 = (DIR ? OFFSET_NUM : -OFFSET_NUM)*56*MMCM_OUTPUT_DIV;
localparam DENOM_1 = OFFSET_DENOM;
localparam CNT_W = $clog2(DENOM_1)+1;
logic [CNT_W-1:0] cnt_reg = '0;
logic ps_en_reg = 1'b0;
always_ff @(posedge output_clk) begin
ps_en_reg <= 1'b0;
if (cnt_reg + NUM_1 >= DENOM_1) begin
cnt_reg <= cnt_reg + NUM_1 - DENOM_1;
ps_en_reg <= 1'b1;
end else begin
cnt_reg <= cnt_reg + NUM_1;
end
end
wire clkfb;
wire output_clk_mmcm;
wire output_offset_clk_mmcm;
MMCME3_ADV #(
// input clocks
.CLKIN1_PERIOD(MMCM_INPUT_CLK_PERIOD),
.REF_JITTER1(MMCM_INPUT_REF_JITTER),
.CLKIN2_PERIOD(0.000),
.REF_JITTER2(0.010),
// divide for PFD input
// US/US+: range 10 MHz to 500 MHz
.DIVCLK_DIVIDE(MMCM_INPUT_DIV),
// multiply for VCO output
// US: range 600 MHz to 1440 MHz
// US+: range 800 MHz to 1600 MHz
.CLKFBOUT_MULT_F(MMCM_MULT),
.CLKFBOUT_PHASE(0),
.CLKFBOUT_USE_FINE_PS("FALSE"),
// divide
.CLKOUT0_DIVIDE_F(MMCM_OUTPUT_DIV),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
.CLKOUT0_USE_FINE_PS("FALSE"),
// divide and phase shift
.CLKOUT1_DIVIDE(MMCM_OUTPUT_DIV),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
.CLKOUT1_USE_FINE_PS("TRUE"),
// Not used
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
.CLKOUT2_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
.CLKOUT3_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_USE_FINE_PS("FALSE"),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
.CLKOUT5_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
.CLKOUT6_USE_FINE_PS("FALSE"),
// no spread spectrum
.SS_EN("FALSE"),
.SS_MODE("CENTER_HIGH"),
.SS_MOD_PERIOD(10000),
.COMPENSATION("AUTO"),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// input clocks
.CLKIN1(input_clk),
.CLKIN2(1'b0),
// select CLKIN1
.CLKINSEL(1'b1),
// direct clkfb feedback
.CLKFBIN(clkfb),
.CLKFBOUT(clkfb),
.CLKFBOUTB(),
// phase-shifted output
.CLKOUT0(output_clk_mmcm),
.CLKOUT0B(),
// Not used
.CLKOUT1(output_offset_clk_mmcm),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(input_rst),
// don't power down
.PWRDWN(1'b0),
// DRP
.DADDR(7'd0),
.DI(16'd0),
.DWE(1'b0),
.DEN(1'b0),
.DCLK(1'b0),
.DO(),
// dynamic phase shift
.PSINCDEC(DIR ? 1'b0 : 1'b1),
.PSEN(ps_en_reg),
.PSCLK(output_clk),
.PSDONE(),
// locked output
.LOCKED(locked),
// input status
.CLKINSTOPPED(),
.CLKFBSTOPPED(),
// CDDC
.CDDCREQ(1'b0),
.CDDCDONE()
);
BUFG
output_clk_bufg_inst (
.I(output_clk_mmcm),
.O(output_clk)
);
BUFG
output_offset_clk_bufg_inst (
.I(output_offset_clk_mmcm),
.O(output_offset_clk)
);
endmodule
`resetall