// SPDX-License-Identifier: MIT /* Copyright (c) 2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * FPGA top-level module */ module fpga # ( // simulation (set to avoid vendor primitives) parameter logic SIM = 1'b0, // vendor ("GENERIC", "XILINX", "ALTERA") parameter string VENDOR = "XILINX", // device family parameter string FAMILY = "zynquplus", // Use 90 degree clock for RGMII transmit parameter logic USE_CLK90 = 1'b1, // SFP rate selection (0 for 1G, 1 for 10G) parameter logic SFP_RATE = 1'b1 ) ( /* * Clock: 25MHz */ input wire logic clk_25mhz, /* * GPIO */ output wire logic [1:0] led, output wire logic [1:0] sfp_led, /* * Ethernet: 1000BASE-T RGMII */ input wire logic phy2_rx_clk, input wire logic [3:0] phy2_rxd, input wire logic phy2_rx_ctl, output wire logic phy2_tx_clk, output wire logic [3:0] phy2_txd, output wire logic phy2_tx_ctl, output wire logic phy2_reset_n, input wire logic phy3_rx_clk, input wire logic [3:0] phy3_rxd, input wire logic phy3_rx_ctl, output wire logic phy3_tx_clk, output wire logic [3:0] phy3_txd, output wire logic phy3_tx_ctl, output wire logic phy3_reset_n, /* * Ethernet: SFP+ */ input wire logic sfp_rx_p, input wire logic sfp_rx_n, output wire logic sfp_tx_p, output wire logic sfp_tx_n, input wire logic sfp_mgt_refclk_p, input wire logic sfp_mgt_refclk_n, output wire logic sfp_tx_disable, input wire logic sfp_tx_fault, input wire logic sfp_rx_los, input wire logic sfp_mod_abs, inout wire logic sfp_i2c_scl, inout wire logic sfp_i2c_sda ); // Clock and reset // Internal 125 MHz clock wire clk_125mhz_mmcm_out; wire clk90_125mhz_mmcm_out; wire clk_125mhz_int; wire clk90_125mhz_int; wire rst_125mhz_int; // Internal 62.5 MHz clock wire clk_62mhz_mmcm_out; wire clk_62mhz_int; // Internal 312.5 MHz clock wire clk_312mhz_mmcm_out; wire clk_312mhz_int; wire rst_312mhz_int; wire mmcm_rst = 1'b0; wire mmcm_locked; wire mmcm_clkfb; // MMCM instance MMCME4_BASE #( // 25 MHz input .CLKIN1_PERIOD(40), .REF_JITTER1(0.010), // 25 MHz input / 1 = 25 MHz PFD (range 10 MHz to 500 MHz) .DIVCLK_DIVIDE(1), // 25 MHz PFD * 50 = 1250 MHz VCO (range 800 MHz to 1600 MHz) .CLKFBOUT_MULT_F(50), .CLKFBOUT_PHASE(0), // 1250 MHz / 10 = 125 MHz, 0 degrees .CLKOUT0_DIVIDE_F(10), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), // 1250 MHz / 10 = 125 MHz, 90 degrees .CLKOUT1_DIVIDE(10), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(90), // 1250 MHz / 20 = 62.5 MHz, 0 degrees .CLKOUT2_DIVIDE(20), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), // 1250 MHz / 4 = 312.5 MHz, 0 degrees .CLKOUT3_DIVIDE(4), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), // Not used .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT4_CASCADE("FALSE"), // Not used .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), // Not used .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), // optimized bandwidth .BANDWIDTH("OPTIMIZED"), // don't wait for lock during startup .STARTUP_WAIT("FALSE") ) clk_mmcm_inst ( // 25 MHz input .CLKIN1(clk_25mhz), // direct clkfb feeback .CLKFBIN(mmcm_clkfb), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), // 125 MHz, 0 degrees .CLKOUT0(clk_125mhz_mmcm_out), .CLKOUT0B(), // 125 MHz, 90 degrees .CLKOUT1(clk90_125mhz_mmcm_out), .CLKOUT1B(), // 62.5 MHz, 0 degrees .CLKOUT2(clk_62mhz_mmcm_out), .CLKOUT2B(), // 312.5 MHz, 0 degrees .CLKOUT3(clk_312mhz_mmcm_out), .CLKOUT3B(), // Not used .CLKOUT4(), // Not used .CLKOUT5(), // Not used .CLKOUT6(), // reset input .RST(mmcm_rst), // don't power down .PWRDWN(1'b0), // locked output .LOCKED(mmcm_locked) ); BUFG clk_125mhz_bufg_inst ( .I(clk_125mhz_mmcm_out), .O(clk_125mhz_int) ); BUFG clk90_125mhz_bufg_inst ( .I(clk90_125mhz_mmcm_out), .O(clk90_125mhz_int) ); BUFG clk_62mhz_bufg_inst ( .I(clk_62mhz_mmcm_out), .O(clk_62mhz_int) ); BUFG clk_312mhz_bufg_inst ( .I(clk_312mhz_mmcm_out), .O(clk_312mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_125mhz_inst ( .clk(clk_125mhz_int), .rst(~mmcm_locked), .out(rst_125mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_312mhz_inst ( .clk(clk_312mhz_int), .rst(~mmcm_locked), .out(rst_312mhz_int) ); // GPIO wire sfp_tx_fault_int; wire sfp_rx_los_int; wire sfp_mod_abs_int; wire sfp_i2c_scl_i; wire sfp_i2c_scl_o; wire sfp_i2c_scl_t; wire sfp_i2c_sda_i; wire sfp_i2c_sda_o; wire sfp_i2c_sda_t; reg sfp_i2c_scl_o_reg; reg sfp_i2c_scl_t_reg; reg sfp_i2c_sda_o_reg; reg sfp_i2c_sda_t_reg; always @(posedge clk_125mhz_int) begin sfp_i2c_scl_o_reg <= sfp_i2c_scl_o; sfp_i2c_scl_t_reg <= sfp_i2c_scl_t; sfp_i2c_sda_o_reg <= sfp_i2c_sda_o; sfp_i2c_sda_t_reg <= sfp_i2c_sda_t; end taxi_sync_signal #( .WIDTH(5), .N(2) ) sync_signal_inst ( .clk(clk_125mhz_int), .in({sfp_tx_fault, sfp_rx_los, sfp_mod_abs, sfp_i2c_scl, sfp_i2c_sda}), .out({sfp_tx_fault_int, sfp_rx_los_int, sfp_mod_abs_int, sfp_i2c_scl_i, sfp_i2c_sda_i}) ); assign sfp_i2c_scl = sfp_i2c_scl_t_reg ? 1'bz : sfp_i2c_scl_o_reg; assign sfp_i2c_sda = sfp_i2c_sda_t_reg ? 1'bz : sfp_i2c_sda_o_reg; // IODELAY elements for RGMII interface to PHY wire [3:0] phy2_rxd_int; wire phy2_rx_ctl_int; wire [3:0] phy3_rxd_int; wire phy3_rx_ctl_int; IDELAYCTRL #( .SIM_DEVICE("ULTRASCALE") ) idelayctrl_inst ( .REFCLK(clk_312mhz_int), .RST(rst_312mhz_int), .RDY() ); for (genvar n = 0; n < 4; n = n + 1) begin : phy2_rxd_idelay_bit IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) idelay_inst ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy2_rxd[n]), .DATAIN(1'b0), .DATAOUT(phy2_rxd_int[n]), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); end IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) phy2_rx_ctl_idelay ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy2_rx_ctl), .DATAIN(1'b0), .DATAOUT(phy2_rx_ctl_int), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); for (genvar n = 0; n < 4; n = n + 1) begin : phy3_rxd_idelay_bit IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) idelay_inst ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy3_rxd[n]), .DATAIN(1'b0), .DATAOUT(phy3_rxd_int[n]), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); end IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) phy3_rx_ctl_idelay ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy3_rx_ctl), .DATAIN(1'b0), .DATAOUT(phy3_rx_ctl_int), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); // SFP wire sfp_tx_p_int; wire sfp_tx_n_int; wire sfp_gmii_clk_int; wire sfp_gmii_rst_int; wire sfp_gmii_clk_en_int = 1'b1; wire [7:0] sfp_gmii_txd_int; wire sfp_gmii_tx_en_int; wire sfp_gmii_tx_er_int; wire [7:0] sfp_gmii_rxd_int; wire sfp_gmii_rx_dv_int; wire sfp_gmii_rx_er_int; if (SFP_RATE == 0) begin : sfp_phy // 1000BASE-X wire sfp_gmii_txuserclk2; wire sfp_gmii_resetdone; assign sfp_gmii_clk_int = sfp_gmii_txuserclk2; taxi_sync_reset #( .N(4) ) sync_reset_sfp_inst ( .clk(sfp_gmii_clk_int), .rst(rst_125mhz_int || !sfp_gmii_resetdone), .out(sfp_gmii_rst_int) ); wire [15:0] sfp_status_vect; wire sfp_status_link_status = sfp_status_vect[0]; wire sfp_status_link_synchronization = sfp_status_vect[1]; wire sfp_status_rudi_c = sfp_status_vect[2]; wire sfp_status_rudi_i = sfp_status_vect[3]; wire sfp_status_rudi_invalid = sfp_status_vect[4]; wire sfp_status_rxdisperr = sfp_status_vect[5]; wire sfp_status_rxnotintable = sfp_status_vect[6]; wire sfp_status_phy_link_status = sfp_status_vect[7]; wire [1:0] sfp_status_remote_fault_encdg = sfp_status_vect[9:8]; wire [1:0] sfp_status_speed = sfp_status_vect[11:10]; wire sfp_status_duplex = sfp_status_vect[12]; wire sfp_status_remote_fault = sfp_status_vect[13]; wire [1:0] sfp_status_pause = sfp_status_vect[15:14]; wire [4:0] sfp_config_vect; assign sfp_config_vect[4] = 1'b0; // autonegotiation enable assign sfp_config_vect[3] = 1'b0; // isolate assign sfp_config_vect[2] = 1'b0; // power down assign sfp_config_vect[1] = 1'b0; // loopback enable assign sfp_config_vect[0] = 1'b0; // unidirectional enable basex_pcs_pma_0 sfp_pcspma ( .gtrefclk_p(sfp_mgt_refclk_p), .gtrefclk_n(sfp_mgt_refclk_n), .gtrefclk_out(), .txn(sfp_tx_n), .txp(sfp_tx_p), .rxn(sfp_rx_n), .rxp(sfp_rx_p), .independent_clock_bufg(clk_62mhz_int), .userclk_out(), .userclk2_out(sfp_gmii_txuserclk2), .rxuserclk_out(), .rxuserclk2_out(), .gtpowergood(), .resetdone(sfp_gmii_resetdone), .pma_reset_out(), .mmcm_locked_out(), .gmii_txd(sfp_gmii_txd_int), .gmii_tx_en(sfp_gmii_tx_en_int), .gmii_tx_er(sfp_gmii_tx_er_int), .gmii_rxd(sfp_gmii_rxd_int), .gmii_rx_dv(sfp_gmii_rx_dv_int), .gmii_rx_er(sfp_gmii_rx_er_int), .gmii_isolate(), .configuration_vector(sfp_config_vect), .status_vector(sfp_status_vect), .reset(rst_125mhz_int), .signal_detect(1'b1) ); end else begin // 10GBASE-R assign sfp_tx_p = sfp_tx_p_int; assign sfp_tx_n = sfp_tx_n_int; end fpga_core #( .SIM(SIM), .VENDOR(VENDOR), .FAMILY(FAMILY), .USE_CLK90(USE_CLK90), .SFP_RATE(SFP_RATE) ) core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk(clk_125mhz_int), .clk90(clk90_125mhz_int), .rst(rst_125mhz_int), /* * GPIO */ .led(led), .sfp_led(sfp_led), /* * Ethernet: 1000BASE-T RGMII */ .phy2_rgmii_rx_clk(phy2_rx_clk), .phy2_rgmii_rxd(phy2_rxd_int), .phy2_rgmii_rx_ctl(phy2_rx_ctl_int), .phy2_rgmii_tx_clk(phy2_tx_clk), .phy2_rgmii_txd(phy2_txd), .phy2_rgmii_tx_ctl(phy2_tx_ctl), .phy2_reset_n(phy2_reset_n), .phy3_rgmii_rx_clk(phy3_rx_clk), .phy3_rgmii_rxd(phy3_rxd_int), .phy3_rgmii_rx_ctl(phy3_rx_ctl_int), .phy3_rgmii_tx_clk(phy3_tx_clk), .phy3_rgmii_txd(phy3_txd), .phy3_rgmii_tx_ctl(phy3_tx_ctl), .phy3_reset_n(phy3_reset_n), /* * Ethernet: SFP+ */ .sfp_rx_p(sfp_rx_p), .sfp_rx_n(sfp_rx_n), .sfp_tx_p(sfp_tx_p_int), .sfp_tx_n(sfp_tx_n_int), .sfp_mgt_refclk_p(sfp_mgt_refclk_p), .sfp_mgt_refclk_n(sfp_mgt_refclk_n), .sfp_gmii_clk(sfp_gmii_clk_int), .sfp_gmii_rst(sfp_gmii_rst_int), .sfp_gmii_clk_en(sfp_gmii_clk_en_int), .sfp_gmii_rxd(sfp_gmii_rxd_int), .sfp_gmii_rx_dv(sfp_gmii_rx_dv_int), .sfp_gmii_rx_er(sfp_gmii_rx_er_int), .sfp_gmii_txd(sfp_gmii_txd_int), .sfp_gmii_tx_en(sfp_gmii_tx_en_int), .sfp_gmii_tx_er(sfp_gmii_tx_er_int), .sfp_tx_disable(sfp_tx_disable), .sfp_tx_fault(sfp_tx_fault_int), .sfp_rx_los(sfp_rx_los_int), .sfp_mod_abs(sfp_mod_abs_int), .sfp_i2c_scl_i(sfp_i2c_scl_i), .sfp_i2c_scl_o(sfp_i2c_scl_o), .sfp_i2c_scl_t(sfp_i2c_scl_t), .sfp_i2c_sda_i(sfp_i2c_sda_i), .sfp_i2c_sda_o(sfp_i2c_sda_o), .sfp_i2c_sda_t(sfp_i2c_sda_t) ); endmodule `resetall