// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2023-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1fs `default_nettype none /* * PTP time distribution leaf */ module taxi_ptp_td_leaf # ( parameter logic TS_REL_EN = 1'b1, parameter logic TS_TOD_EN = 1'b1, parameter TS_FNS_W = 16, parameter TS_REL_NS_W = 48, parameter TS_TOD_S_W = 48, parameter TS_REL_W = TS_REL_NS_W + TS_FNS_W, parameter TS_TOD_W = TS_TOD_S_W + 32 + TS_FNS_W, parameter TD_SDI_PIPELINE = 2 ) ( input wire logic clk, input wire logic rst, input wire logic sample_clk, /* * PTP clock interface */ input wire logic ptp_clk, input wire logic ptp_rst, input wire logic ptp_td_sdi, /* * Timestamp output */ output wire logic [TS_REL_W-1:0] output_ts_rel, output wire logic output_ts_rel_step, output wire logic [TS_TOD_W-1:0] output_ts_tod, output wire logic output_ts_tod_step, /* * PPS output (ToD format only) */ output wire logic output_pps, output wire logic output_pps_str, /* * Status */ output wire logic locked ); localparam SYNC_DELAY = 32-2-TD_SDI_PIPELINE; localparam TS_NS_W = TS_REL_NS_W < 9 ? 9 : TS_REL_NS_W; localparam TS_TOD_NS_W = 30; localparam PERIOD_NS_W = 8; localparam FNS_W = 16; localparam CMP_FNS_W = 4; localparam SRC_FNS_W = CMP_FNS_W+8; localparam LOG_RATE = 3; localparam PHASE_CNT_W = LOG_RATE; localparam PHASE_ACC_W = PHASE_CNT_W+16; localparam LOAD_CNT_W = 8-LOG_RATE-1; localparam LOG_SAMPLE_SYNC_RATE = 4; localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2; localparam LOG_PHASE_ERR_RATE = 3; localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2; localparam DST_SYNC_LOCK_W = 5; localparam FREQ_LOCK_W = 5; localparam PTP_LOCK_W = 8; localparam TIME_ERR_INT_W = PERIOD_NS_W+FNS_W; localparam [30:0] NS_PER_S = 31'd1_000_000_000; // pipeline to facilitate long input path wire ptp_td_sdi_pipe[0:TD_SDI_PIPELINE]; assign ptp_td_sdi_pipe[0] = ptp_td_sdi; for (genvar n = 0; n < TD_SDI_PIPELINE; n = n + 1) begin : pipe_stage (* shreg_extract = "no" *) reg ptp_td_sdi_reg = 0; assign ptp_td_sdi_pipe[n+1] = ptp_td_sdi_reg; always_ff @(posedge ptp_clk) begin ptp_td_sdi_reg <= ptp_td_sdi_pipe[n]; end end // deserialize data logic [15:0] td_shift_reg = '0; logic [4:0] bit_cnt_reg = '0; logic td_valid_reg = 1'b0; logic [3:0] td_index_reg = '0; logic [3:0] td_msg_reg = '0; logic [15:0] td_tdata_reg = '0; logic td_tvalid_reg = 1'b0; logic td_tlast_reg = 1'b0; logic [7:0] td_tid_reg = '0; logic td_sync_reg = 1'b0; always_ff @(posedge ptp_clk) begin td_shift_reg <= {ptp_td_sdi_pipe[TD_SDI_PIPELINE], td_shift_reg[15:1]}; td_tvalid_reg <= 1'b0; if (bit_cnt_reg != 0) begin bit_cnt_reg <= bit_cnt_reg - 1; end else begin td_valid_reg <= 1'b0; if (td_valid_reg) begin td_tdata_reg <= td_shift_reg; td_tvalid_reg <= 1'b1; td_tlast_reg <= ptp_td_sdi_pipe[TD_SDI_PIPELINE]; td_tid_reg <= {td_msg_reg, td_index_reg}; if (td_index_reg == 0) begin td_msg_reg <= td_shift_reg[3:0]; td_tid_reg[7:4] <= td_shift_reg[3:0]; end td_index_reg <= td_index_reg + 1; td_sync_reg = !td_sync_reg; end if (ptp_td_sdi_pipe[TD_SDI_PIPELINE] == 0) begin bit_cnt_reg <= 16; td_valid_reg <= 1'b1; end else begin td_index_reg <= 0; end end if (ptp_rst) begin bit_cnt_reg <= 0; td_valid_reg <= 1'b0; td_tvalid_reg <= 1'b0; end end // sync TD data logic [15:0] dst_td_tdata_reg = '0; logic dst_td_tvalid_reg = 1'b0; logic [7:0] dst_td_tid_reg = '0; (* shreg_extract = "no" *) logic td_sync_sync1_reg = 1'b0; (* shreg_extract = "no" *) logic td_sync_sync2_reg = 1'b0; (* shreg_extract = "no" *) logic td_sync_sync3_reg = 1'b0; always_ff @(posedge clk) begin td_sync_sync1_reg <= td_sync_reg; td_sync_sync2_reg <= td_sync_sync1_reg; td_sync_sync3_reg <= td_sync_sync2_reg; end always_ff @(posedge clk) begin dst_td_tvalid_reg <= 1'b0; if (td_sync_sync3_reg ^ td_sync_sync2_reg) begin dst_td_tdata_reg <= td_tdata_reg; dst_td_tvalid_reg <= 1'b1; dst_td_tid_reg <= td_tid_reg; end if (rst) begin dst_td_tvalid_reg <= 1'b0; end end // source clock and sync generation logic [5:0] src_sync_delay_reg = '0; logic src_load_reg = 1'b0; logic [PHASE_CNT_W-1:0] src_phase_reg = '0; logic src_update_reg = 1'b0; logic src_sync_reg = 1'b0; logic src_marker_reg = 1'b0; logic [PERIOD_NS_W+32-1:0] src_period_reg = '0; logic [PERIOD_NS_W+32-1:0] src_period_shadow_reg = '0; logic [9+SRC_FNS_W-1:0] src_ns_reg = '0; logic [9+32-1:0] src_ns_shadow_reg = '0; always_ff @(posedge ptp_clk) begin src_load_reg <= 1'b0; {src_update_reg, src_phase_reg} <= src_phase_reg+1; if (src_update_reg) begin src_ns_reg <= src_ns_reg + (9+SRC_FNS_W)'({src_period_reg, {PHASE_CNT_W{1'b0}}} >> (32-SRC_FNS_W)); src_sync_reg <= !src_sync_reg; end // extract data if (td_tvalid_reg) begin if (td_tid_reg[3:0] == 4'd6) begin src_ns_shadow_reg[15:0] <= td_tdata_reg; end if (td_tid_reg[3:0] == 4'd7) begin src_ns_shadow_reg[31:16] <= td_tdata_reg; end if (td_tid_reg[3:0] == 4'd8) begin src_ns_shadow_reg[40:32] <= td_tdata_reg[8:0]; end if (td_tid_reg[3:0] == 4'd11) begin src_period_shadow_reg[15:0] <= td_tdata_reg; end if (td_tid_reg[3:0] == 4'd12) begin src_period_shadow_reg[31:16] <= td_tdata_reg; end if (td_tid_reg[3:0] == 4'd13) begin src_period_shadow_reg[39:32] <= td_tdata_reg[7:0]; end end if (src_load_reg) begin src_ns_reg <= (9+SRC_FNS_W)'(src_ns_shadow_reg >> (32-SRC_FNS_W)); src_period_reg <= src_period_shadow_reg; src_sync_reg <= 1'b1; src_marker_reg <= !src_marker_reg; end if (src_sync_delay_reg == 1) begin src_load_reg <= 1'b1; src_phase_reg <= 0; end if (src_sync_delay_reg != 0) begin src_sync_delay_reg <= src_sync_delay_reg - 1; end if (td_tvalid_reg && td_tlast_reg) begin src_sync_delay_reg <= 6'(SYNC_DELAY); end end logic [PERIOD_NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next; logic [9+CMP_FNS_W-1:0] dst_ns_capt_reg = '0; logic [9+CMP_FNS_W-1:0] src_ns_sync_reg = '0; logic [FNS_W-1:0] ts_fns_lsb_reg = '0, ts_fns_lsb_next; logic [FNS_W-1:0] ts_fns_reg = '0, ts_fns_next; logic [8:0] ts_rel_ns_lsb_reg = '0, ts_rel_ns_lsb_next; logic [TS_NS_W-1:0] ts_rel_ns_reg = '0, ts_rel_ns_next; logic ts_rel_step_reg = 1'b0, ts_rel_step_next; logic [TS_TOD_S_W-1:0] ts_tod_s_reg = '0, ts_tod_s_next; logic [TS_TOD_NS_W-1:0] ts_tod_ns_reg = '0, ts_tod_ns_next; logic [8:0] ts_tod_offset_ns_reg = '0, ts_tod_offset_ns_next; logic ts_tod_step_reg = 1'b0, ts_tod_step_next; logic pps_reg = 1'b0, pps_next; logic pps_str_reg = 1'b0, pps_str_next; logic [PHASE_ACC_W-1:0] dst_phase_reg = '0, dst_phase_next; logic [PHASE_ACC_W-1:0] dst_phase_inc_reg = '0, dst_phase_inc_next; logic dst_sync_reg = 1'b0; logic dst_update_reg = 1'b0, dst_update_next; (* shreg_extract = "no" *) logic src_sync_sync1_reg = 1'b0; (* shreg_extract = "no" *) logic src_sync_sync2_reg = 1'b0; (* shreg_extract = "no" *) logic src_sync_sync3_reg = 1'b0; (* shreg_extract = "no" *) logic src_marker_sync1_reg = 1'b0; (* shreg_extract = "no" *) logic src_marker_sync2_reg = 1'b0; (* shreg_extract = "no" *) logic src_marker_sync3_reg = 1'b0; (* shreg_extract = "no" *) logic src_sync_sample_sync1_reg = 1'b0; (* shreg_extract = "no" *) logic src_sync_sample_sync2_reg = 1'b0; (* shreg_extract = "no" *) logic src_sync_sample_sync3_reg = 1'b0; (* shreg_extract = "no" *) logic dst_sync_sample_sync1_reg = 1'b0; (* shreg_extract = "no" *) logic dst_sync_sample_sync2_reg = 1'b0; (* shreg_extract = "no" *) logic dst_sync_sample_sync3_reg = 1'b0; logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0; logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0; logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0; logic sample_update_reg = 1'b0; logic sample_update_sync1_reg = 1'b0; logic sample_update_sync2_reg = 1'b0; logic sample_update_sync3_reg = 1'b0; // CDC logic always_ff @(posedge clk) begin src_sync_sync1_reg <= src_sync_reg; src_sync_sync2_reg <= src_sync_sync1_reg; src_sync_sync3_reg <= src_sync_sync2_reg; src_marker_sync1_reg <= src_marker_reg; src_marker_sync2_reg <= src_marker_sync1_reg; src_marker_sync3_reg <= src_marker_sync2_reg; end always_ff @(posedge sample_clk) begin src_sync_sample_sync1_reg <= src_sync_reg; src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg; src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg; dst_sync_sample_sync1_reg <= dst_sync_reg; dst_sync_sample_sync2_reg <= dst_sync_sample_sync1_reg; dst_sync_sample_sync3_reg <= dst_sync_sample_sync2_reg; end logic edge_1_reg = 1'b0; logic edge_2_reg = 1'b0; logic [3:0] active_reg = '0; always_ff @(posedge sample_clk) begin // phase and frequency detector if (dst_sync_sample_sync2_reg && !dst_sync_sample_sync3_reg) begin if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin edge_1_reg <= 1'b0; edge_2_reg <= 1'b0; end else begin edge_1_reg <= !edge_2_reg; edge_2_reg <= 1'b0; end end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin edge_1_reg <= 1'b0; edge_2_reg <= !edge_1_reg; end // accumulator sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg})); sample_cnt_reg <= sample_cnt_reg + 1; if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin active_reg[0] <= 1'b1; end if (sample_cnt_reg == 0) begin active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg}; sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg})); sample_acc_out_reg <= sample_acc_reg; if (active_reg != 0) begin sample_update_reg <= !sample_update_reg; end end end always_ff @(posedge clk) begin sample_update_sync1_reg <= sample_update_reg; sample_update_sync2_reg <= sample_update_sync1_reg; sample_update_sync3_reg <= sample_update_sync2_reg; end logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0; logic sample_acc_sync_valid_reg = '0; logic [PHASE_ACC_W-1:0] dst_err_int_reg = '0, dst_err_int_next; logic [1:0] dst_ovf; logic [DST_SYNC_LOCK_W-1:0] dst_sync_lock_count_reg = '0, dst_sync_lock_count_next; logic dst_sync_locked_reg = 1'b0, dst_sync_locked_next; logic dst_gain_sel_reg = '0, dst_gain_sel_next; always_comb begin {dst_update_next, dst_phase_next} = dst_phase_reg + dst_phase_inc_reg; dst_phase_inc_next = dst_phase_inc_reg; dst_err_int_next = dst_err_int_reg; dst_sync_lock_count_next = dst_sync_lock_count_reg; dst_sync_locked_next = dst_sync_locked_reg; dst_gain_sel_next = dst_gain_sel_reg; if (sample_acc_sync_valid_reg) begin // updated sampled dst_phase error // gain scheduling casez (sample_acc_sync_reg[SAMPLE_ACC_W-4 +: 4]) 4'b01zz: dst_gain_sel_next = 1'b1; 4'b001z: dst_gain_sel_next = 1'b1; 4'b0001: dst_gain_sel_next = 1'b1; 4'b0000: dst_gain_sel_next = 1'b0; 4'b1111: dst_gain_sel_next = 1'b0; 4'b1110: dst_gain_sel_next = 1'b1; 4'b110z: dst_gain_sel_next = 1'b1; 4'b10zz: dst_gain_sel_next = 1'b1; default: dst_gain_sel_next = 1'b0; endcase // time integral of error case (dst_gain_sel_reg) 1'd0: {dst_ovf, dst_err_int_next} = $signed({1'b0, dst_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg)); 1'd1: {dst_ovf, dst_err_int_next} = $signed({1'b0, dst_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**7); endcase // saturate if (dst_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero dst_err_int_next = '0; end else if (dst_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 dst_err_int_next = '1; end // compute output case (dst_gain_sel_reg) 1'd0: {dst_ovf, dst_phase_inc_next} = $signed({1'b0, dst_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4); 1'd1: {dst_ovf, dst_phase_inc_next} = $signed({1'b0, dst_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**11); endcase // saturate if (dst_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero dst_phase_inc_next = '0; end else if (dst_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 dst_phase_inc_next = '1; end // locked status if (dst_gain_sel_reg == 1'd0) begin if (&dst_sync_lock_count_reg) begin dst_sync_locked_next = 1'b1; end else begin dst_sync_lock_count_next = dst_sync_lock_count_reg + 1; end end else begin if (|dst_sync_lock_count_reg) begin dst_sync_lock_count_next = dst_sync_lock_count_reg - 1; end else begin dst_sync_locked_next = 1'b0; end end end end logic [LOAD_CNT_W-1:0] dst_load_cnt_reg = '0; logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0; logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0; logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0; logic phase_err_out_valid_reg = '0; logic phase_last_src_reg = 1'b0; logic phase_last_dst_reg = 1'b0; logic phase_edge_1_reg = 1'b0; logic phase_edge_2_reg = 1'b0; logic ts_sync_valid_reg = 1'b0; always_ff @(posedge clk) begin dst_phase_reg <= dst_phase_next; dst_phase_inc_reg <= dst_phase_inc_next; dst_update_reg <= dst_update_next; sample_acc_sync_valid_reg <= 1'b0; if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin // latch in synchronized counts from phase detector sample_acc_sync_reg <= sample_acc_out_reg; sample_acc_sync_valid_reg <= 1'b1; end if (dst_update_reg) begin // capture local TS dst_ns_capt_reg <= (9+CMP_FNS_W)'({ts_rel_ns_reg, ts_fns_reg} >> (FNS_W-CMP_FNS_W)); dst_sync_reg <= !dst_sync_reg; if (dst_sync_reg) begin dst_load_cnt_reg <= dst_load_cnt_reg + 1; end end ts_sync_valid_reg <= 1'b0; if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin // store captured source TS src_ns_sync_reg <= (9+CMP_FNS_W)'(src_ns_reg >> (SRC_FNS_W-CMP_FNS_W)); ts_sync_valid_reg <= 1'b1; end if (src_marker_sync2_reg ^ src_marker_sync3_reg) begin dst_load_cnt_reg <= 0; end phase_err_out_valid_reg <= 1'b0; if (ts_sync_valid_reg) begin // coarse phase locking // phase and frequency detector phase_last_src_reg <= src_ns_sync_reg[8+CMP_FNS_W]; phase_last_dst_reg <= dst_ns_capt_reg[8+CMP_FNS_W]; if (dst_ns_capt_reg[8+CMP_FNS_W] && !phase_last_dst_reg) begin if (src_ns_sync_reg[8+CMP_FNS_W] && !phase_last_src_reg) begin phase_edge_1_reg <= 1'b0; phase_edge_2_reg <= 1'b0; end else begin phase_edge_1_reg <= !phase_edge_2_reg; phase_edge_2_reg <= 1'b0; end end else if (src_ns_sync_reg[8+CMP_FNS_W] && !phase_last_src_reg) begin phase_edge_1_reg <= 1'b0; phase_edge_2_reg <= !phase_edge_1_reg; end // accumulator phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg})); phase_err_cnt_reg <= phase_err_cnt_reg + 1; if (phase_err_cnt_reg == 0) begin phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg})); phase_err_out_reg <= phase_err_acc_reg; phase_err_out_valid_reg <= 1'b1; end end dst_err_int_reg <= dst_err_int_next; dst_sync_lock_count_reg <= dst_sync_lock_count_next; dst_sync_locked_reg <= dst_sync_locked_next; dst_gain_sel_reg <= dst_gain_sel_next; if (rst) begin dst_phase_reg <= '0; dst_phase_inc_reg <= '0; dst_sync_reg <= 1'b0; dst_update_reg <= 1'b0; dst_err_int_reg <= 0; dst_sync_lock_count_reg <= 0; dst_sync_locked_reg <= 1'b0; ts_sync_valid_reg <= 1'b0; end end logic dst_rel_step_shadow_reg = 1'b0, dst_rel_step_shadow_next; logic [47:0] dst_rel_ns_shadow_reg = '0, dst_rel_ns_shadow_next; logic dst_rel_shadow_valid_reg = '0, dst_rel_shadow_valid_next; logic dst_tod_step_shadow_reg = 1'b0, dst_tod_step_shadow_next; logic [29:0] dst_tod_ns_shadow_reg = '0, dst_tod_ns_shadow_next; logic [47:0] dst_tod_s_shadow_reg = '0, dst_tod_s_shadow_next; logic dst_tod_shadow_valid_reg = '0, dst_tod_shadow_valid_next; logic ts_rel_diff_reg = 1'b0, ts_rel_diff_next; logic ts_rel_diff_valid_reg = 1'b0, ts_rel_diff_valid_next; logic [1:0] ts_rel_mismatch_cnt_reg = '0, ts_rel_mismatch_cnt_next; logic ts_rel_load_ts_reg = 1'b0, ts_rel_load_ts_next; logic ts_tod_diff_reg = 1'b0, ts_tod_diff_next; logic ts_tod_diff_valid_reg = 1'b0, ts_tod_diff_valid_next; logic [1:0] ts_tod_mismatch_cnt_reg = '0, ts_tod_mismatch_cnt_next; logic ts_tod_load_ts_reg = 1'b0, ts_tod_load_ts_next; logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next; logic ts_ns_diff_valid_reg = 1'b0, ts_ns_diff_valid_next; logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next; logic [1:0] ptp_ovf; logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next; logic freq_locked_reg = 1'b0, freq_locked_next; logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next; logic ptp_locked_reg = 1'b0, ptp_locked_next; logic gain_sel_reg = 0, gain_sel_next; if (TS_REL_EN) begin assign output_ts_rel = TS_REL_W'({ts_rel_ns_reg, ts_fns_reg, {TS_FNS_W{1'b0}}} >> FNS_W); assign output_ts_rel_step = ts_rel_step_reg; end else begin assign output_ts_rel = '0; assign output_ts_rel_step = 1'b0; end if (TS_TOD_EN) begin assign output_ts_tod = TS_TOD_W'({ts_tod_s_reg, 2'b00, ts_tod_ns_reg, ts_fns_reg, {TS_FNS_W{1'b0}}} >> FNS_W); assign output_ts_tod_step = ts_tod_step_reg; assign output_pps = pps_reg; assign output_pps_str = pps_str_reg; end else begin assign output_ts_tod = '0; assign output_ts_tod_step = 0; assign output_pps = 1'b0; assign output_pps_str = 1'b0; end assign locked = ptp_locked_reg && freq_locked_reg && dst_sync_locked_reg; always_comb begin period_ns_next = period_ns_reg; ts_fns_lsb_next = ts_fns_lsb_reg; ts_fns_next = ts_fns_reg; ts_rel_ns_lsb_next = ts_rel_ns_lsb_reg; ts_rel_ns_next = ts_rel_ns_reg; ts_rel_step_next = 1'b0; ts_tod_s_next = ts_tod_s_reg; ts_tod_ns_next = ts_tod_ns_reg; ts_tod_offset_ns_next = ts_tod_offset_ns_reg; ts_tod_step_next = 1'b0; dst_rel_step_shadow_next = dst_rel_step_shadow_reg; dst_rel_ns_shadow_next = dst_rel_ns_shadow_reg; dst_rel_shadow_valid_next = dst_rel_shadow_valid_reg; dst_tod_step_shadow_next = dst_tod_step_shadow_reg; dst_tod_ns_shadow_next = dst_tod_ns_shadow_reg; dst_tod_s_shadow_next = dst_tod_s_shadow_reg; dst_tod_shadow_valid_next = dst_tod_shadow_valid_reg; ts_rel_diff_next = ts_rel_diff_reg; ts_rel_diff_valid_next = 1'b0; ts_rel_mismatch_cnt_next = ts_rel_mismatch_cnt_reg; ts_rel_load_ts_next = ts_rel_load_ts_reg; ts_tod_diff_next = ts_tod_diff_reg; ts_tod_diff_valid_next = 1'b0; ts_tod_mismatch_cnt_next = ts_tod_mismatch_cnt_reg; ts_tod_load_ts_next = ts_tod_load_ts_reg; ts_ns_diff_next = ts_ns_diff_reg; ts_ns_diff_valid_next = 1'b0; time_err_int_next = time_err_int_reg; freq_lock_count_next = freq_lock_count_reg; freq_locked_next = freq_locked_reg; ptp_lock_count_next = ptp_lock_count_reg; ptp_locked_next = ptp_locked_reg; gain_sel_next = gain_sel_reg; pps_next = 1'b0; pps_str_next = pps_str_reg; // extract data if (dst_td_tvalid_reg) begin if (TS_TOD_EN) begin if (dst_td_tid_reg[3:0] == 4'd1) begin // prevent stale data from being used in time sync dst_tod_shadow_valid_next = 1'b0; end if (dst_td_tid_reg == {4'd0, 4'd1}) begin dst_tod_ns_shadow_next[15:0] = dst_td_tdata_reg; dst_tod_shadow_valid_next = 1'b0; end if (dst_td_tid_reg == {4'd0, 4'd2}) begin dst_tod_ns_shadow_next[29:16] = dst_td_tdata_reg[13:0]; dst_tod_step_shadow_next = dst_tod_step_shadow_reg | dst_td_tdata_reg[15]; dst_tod_shadow_valid_next = 1'b0; end if (dst_td_tid_reg == {4'd0, 4'd3}) begin dst_tod_s_shadow_next[15:0] = dst_td_tdata_reg; dst_tod_shadow_valid_next = 1'b0; end if (dst_td_tid_reg == {4'd0, 4'd4}) begin dst_tod_s_shadow_next[31:16] = dst_td_tdata_reg; dst_tod_shadow_valid_next = 1'b0; end if (dst_td_tid_reg == {4'd0, 4'd5}) begin dst_tod_s_shadow_next[47:32] = dst_td_tdata_reg; dst_tod_shadow_valid_next = 1'b1; end if (dst_td_tid_reg == {4'd1, 4'd1}) begin ts_tod_offset_ns_next = dst_td_tdata_reg[8:0]; end end if (TS_REL_EN) begin if (dst_td_tid_reg[3:0] == 4'd0) begin dst_rel_step_shadow_next = dst_rel_step_shadow_reg | dst_td_tdata_reg[8]; end if (dst_td_tid_reg[3:0] == 4'd8) begin dst_rel_ns_shadow_next[15:0] = dst_td_tdata_reg; dst_rel_shadow_valid_next = 1'b0; end if (dst_td_tid_reg[3:0] == 4'd9) begin dst_rel_ns_shadow_next[31:16] = dst_td_tdata_reg; dst_rel_shadow_valid_next = 1'b0; end if (dst_td_tid_reg[3:0] == 4'd10) begin dst_rel_ns_shadow_next[47:32] = dst_td_tdata_reg; dst_rel_shadow_valid_next = 1'b1; end end end // PTP clock // shared fractional ns and relative timestamp least significant bits {ts_rel_ns_lsb_next, ts_fns_lsb_next} = ({ts_rel_ns_lsb_reg, ts_fns_lsb_reg} + period_ns_reg); ts_fns_next = ts_fns_lsb_reg; // relative timestamp ts_rel_ns_next[8:0] = ts_rel_ns_lsb_reg; if (TS_REL_EN) begin if (!ts_rel_ns_next[8] && ts_rel_ns_reg[8]) begin ts_rel_ns_next[TS_REL_NS_W-1:9] = ts_rel_ns_reg[TS_REL_NS_W-1:9] + 1; end if (dst_update_reg && !dst_sync_reg && dst_rel_shadow_valid_reg && (dst_load_cnt_reg == 0)) begin // check timestamp MSBs if (dst_rel_step_shadow_reg || ts_rel_load_ts_reg) begin // input stepped ts_rel_ns_next[TS_NS_W-1:9] = dst_rel_ns_shadow_reg[TS_NS_W-1:9]; ts_rel_step_next = 1'b1; end ts_rel_diff_next = dst_rel_ns_shadow_reg[TS_NS_W-1:9] != ts_rel_ns_reg[TS_NS_W-1:9]; ts_rel_load_ts_next = 1'b0; dst_rel_shadow_valid_next = 1'b0; dst_rel_step_shadow_next = 1'b0; ts_rel_diff_valid_next = 1'b1; end if (ts_rel_diff_valid_reg) begin if (ts_rel_diff_reg) begin if (&ts_rel_mismatch_cnt_reg) begin ts_rel_load_ts_next = 1'b1; ts_rel_mismatch_cnt_next = 0; end else begin ts_rel_mismatch_cnt_next = ts_rel_mismatch_cnt_reg + 1; end end else begin ts_rel_mismatch_cnt_next = 0; end end end // absolute time-of-day timestamp if (TS_TOD_EN) begin ts_tod_ns_next[8:0] = ts_rel_ns_lsb_reg + ts_tod_offset_ns_reg; if (ts_tod_ns_reg[TS_TOD_NS_W-1]) begin pps_str_next = 1'b0; end if (!ts_tod_ns_next[8] && ts_tod_ns_reg[8]) begin if (ts_tod_ns_reg >> 9 == 30'(NS_PER_S-1) >> 9) begin ts_tod_ns_next[TS_TOD_NS_W-1:9] = 0; ts_tod_s_next = ts_tod_s_reg + 1; pps_next = 1'b1; pps_str_next = 1'b1; end else begin ts_tod_ns_next[TS_TOD_NS_W-1:9] = ts_tod_ns_reg[TS_TOD_NS_W-1:9] + 1; end end if (dst_update_reg && !dst_sync_reg && dst_tod_shadow_valid_reg && (dst_load_cnt_reg == 0)) begin // check timestamp MSBs if (dst_tod_step_shadow_reg || ts_tod_load_ts_reg) begin // input stepped ts_tod_s_next = dst_tod_s_shadow_reg; ts_tod_ns_next[TS_TOD_NS_W-1:9] = dst_tod_ns_shadow_reg[TS_TOD_NS_W-1:9]; ts_tod_step_next = 1'b1; end ts_tod_diff_next = dst_tod_s_shadow_reg != ts_tod_s_reg || dst_tod_ns_shadow_reg[TS_TOD_NS_W-1:9] != ts_tod_ns_reg[TS_TOD_NS_W-1:9]; ts_tod_load_ts_next = 1'b0; dst_tod_shadow_valid_next = 1'b0; dst_tod_step_shadow_next = 1'b0; ts_tod_diff_valid_next = 1'b1; end if (ts_tod_diff_valid_reg) begin if (ts_tod_diff_reg) begin if (&ts_tod_mismatch_cnt_reg) begin ts_tod_load_ts_next = 1'b1; ts_tod_mismatch_cnt_next = 0; end else begin ts_tod_mismatch_cnt_next = ts_tod_mismatch_cnt_reg + 1; end end else begin ts_tod_mismatch_cnt_next = 0; end end end if (ts_sync_valid_reg) begin // compute difference ts_ns_diff_valid_next = freq_locked_reg; ts_ns_diff_next = src_ns_sync_reg - dst_ns_capt_reg; end if (phase_err_out_valid_reg) begin // coarse phase/frequency lock of PTP clock if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin if (freq_lock_count_reg != 0) begin freq_lock_count_next = freq_lock_count_reg - 1; end else begin freq_locked_next = 1'b0; end end else begin if (&freq_lock_count_reg) begin freq_locked_next = 1'b1; end else begin freq_lock_count_next = freq_lock_count_reg + 1; end end if (!freq_locked_reg) begin ts_ns_diff_next = $signed(phase_err_out_reg) * 16 * 2**CMP_FNS_W; ts_ns_diff_valid_next = 1'b1; end end if (ts_ns_diff_valid_reg) begin // PI control // gain scheduling casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5]) 5'b01zzz: gain_sel_next = 1'b1; 5'b001zz: gain_sel_next = 1'b1; 5'b0001z: gain_sel_next = 1'b1; 5'b00001: gain_sel_next = 1'b1; 5'b00000: gain_sel_next = 1'b0; 5'b11111: gain_sel_next = 1'b0; 5'b11110: gain_sel_next = 1'b1; 5'b1110z: gain_sel_next = 1'b1; 5'b110zz: gain_sel_next = 1'b1; 5'b10zzz: gain_sel_next = 1'b1; default: gain_sel_next = 1'b0; endcase // time integral of error case (gain_sel_reg) 1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4); 1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2); endcase // saturate if (ptp_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero time_err_int_next = '0; end else if (ptp_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 time_err_int_next = '1; end // compute output case (gain_sel_reg) 1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + ($signed(ts_ns_diff_reg) * 2**2); 1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + ($signed(ts_ns_diff_reg) * 2**6); endcase // saturate if (ptp_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero period_ns_next = '0; end else if (ptp_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 period_ns_next = '1; end // adjust period if integrator is saturated if (time_err_int_reg == 0) begin period_ns_next = '0; end else if (~time_err_int_reg == 0) begin period_ns_next = '1; end // locked status if (!freq_locked_reg) begin ptp_lock_count_next = 0; ptp_locked_next = 1'b0; end else if (gain_sel_reg == 1'b0) begin if (&ptp_lock_count_reg) begin ptp_locked_next = 1'b1; end else begin ptp_lock_count_next = ptp_lock_count_reg + 1; end end else begin if (ptp_lock_count_reg != 0) begin ptp_lock_count_next = ptp_lock_count_reg - 1; end else begin ptp_locked_next = 1'b0; end end end end always_ff @(posedge clk) begin period_ns_reg <= period_ns_next; ts_fns_lsb_reg <= ts_fns_lsb_next; ts_fns_reg <= ts_fns_next; ts_rel_ns_lsb_reg <= ts_rel_ns_lsb_next; ts_rel_ns_reg <= ts_rel_ns_next; ts_rel_step_reg <= ts_rel_step_next; ts_tod_s_reg <= ts_tod_s_next; ts_tod_ns_reg <= ts_tod_ns_next; ts_tod_offset_ns_reg <= ts_tod_offset_ns_next; ts_tod_step_reg <= ts_tod_step_next; dst_rel_step_shadow_reg <= dst_rel_step_shadow_next; dst_rel_ns_shadow_reg <= dst_rel_ns_shadow_next; dst_rel_shadow_valid_reg <= dst_rel_shadow_valid_next; dst_tod_step_shadow_reg <= dst_tod_step_shadow_next; dst_tod_ns_shadow_reg <= dst_tod_ns_shadow_next; dst_tod_s_shadow_reg <= dst_tod_s_shadow_next; dst_tod_shadow_valid_reg <= dst_tod_shadow_valid_next; ts_rel_diff_reg <= ts_rel_diff_next; ts_rel_diff_valid_reg <= ts_rel_diff_valid_next; ts_rel_mismatch_cnt_reg <= ts_rel_mismatch_cnt_next; ts_rel_load_ts_reg <= ts_rel_load_ts_next; ts_tod_diff_reg <= ts_tod_diff_next; ts_tod_diff_valid_reg <= ts_tod_diff_valid_next; ts_tod_mismatch_cnt_reg <= ts_tod_mismatch_cnt_next; ts_tod_load_ts_reg <= ts_tod_load_ts_next; ts_ns_diff_reg <= ts_ns_diff_next; ts_ns_diff_valid_reg <= ts_ns_diff_valid_next; time_err_int_reg <= time_err_int_next; freq_lock_count_reg <= freq_lock_count_next; freq_locked_reg <= freq_locked_next; ptp_lock_count_reg <= ptp_lock_count_next; ptp_locked_reg <= ptp_locked_next; gain_sel_reg <= gain_sel_next; pps_reg <= pps_next; pps_str_reg <= pps_str_next; if (rst) begin period_ns_reg <= '0; ts_fns_lsb_reg <= '0; ts_fns_reg <= '0; ts_rel_ns_lsb_reg <= '0; ts_rel_ns_reg <= '0; ts_rel_step_reg <= 1'b0; ts_tod_s_reg <= '0; ts_tod_ns_reg <= '0; ts_tod_step_reg <= 1'b0; dst_rel_shadow_valid_reg <= 1'b0; pps_reg <= 1'b0; pps_str_reg <= 1'b0; ts_rel_diff_reg <= 1'b0; ts_rel_diff_valid_reg <= 1'b0; ts_rel_mismatch_cnt_reg <= '0; ts_rel_load_ts_reg <= '0; ts_tod_diff_reg <= 1'b0; ts_tod_diff_valid_reg <= 1'b0; ts_tod_mismatch_cnt_reg <= '0; ts_tod_load_ts_reg <= '0; ts_ns_diff_valid_reg <= 1'b0; time_err_int_reg <= '0; freq_lock_count_reg <= '0; freq_locked_reg <= 1'b0; ptp_lock_count_reg <= '0; ptp_locked_reg <= 1'b0; end end endmodule `resetall