// SPDX-License-Identifier: MIT /* Copyright (c) 2014-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * FPGA top-level module */ module fpga # ( // simulation (set to avoid vendor primitives) parameter logic SIM = 1'b0, // vendor ("GENERIC", "XILINX", "ALTERA") parameter string VENDOR = "XILINX", // device family parameter string FAMILY = "kintex7", // Use 90 degree clock for RGMII transmit parameter logic USE_CLK90 = 1'b1, // BASE-T PHY type (GMII, RGMII, SGMII) parameter BASET_PHY_TYPE = "GMII", // Invert SFP data pins parameter logic SFP_INVERT = 1'b1 ) ( /* * Clock: 200MHz * Reset: Push button, active high */ input wire logic clk_200mhz_p, input wire logic clk_200mhz_n, input wire logic reset, /* * GPIO */ input wire logic btnu, input wire logic btnl, input wire logic btnd, input wire logic btnr, input wire logic btnc, input wire logic [3:0] sw, output wire logic [7:0] led, /* * UART: 115200 bps, 8N1 */ input wire logic uart_rxd, output wire logic uart_txd, output wire logic uart_rts, input wire logic uart_cts, /* * Ethernet: SFP+ */ input wire logic sfp_rx_p, input wire logic sfp_rx_n, output wire logic sfp_tx_p, output wire logic sfp_tx_n, input wire logic phy_sgmii_rx_p, input wire logic phy_sgmii_rx_n, output wire logic phy_sgmii_tx_p, output wire logic phy_sgmii_tx_n, input wire logic sgmii_clk_p, input wire logic sgmii_clk_n, output wire logic sfp_tx_disable_b, /* * Ethernet: 1000BASE-T GMII, RGMII, or SGMII */ input wire logic phy_rx_clk, input wire logic [7:0] phy_rxd, input wire logic phy_rx_dv, input wire logic phy_rx_er, output wire logic phy_gtx_clk, input wire logic phy_tx_clk, output wire logic [7:0] phy_txd, output wire logic phy_tx_en, output wire logic phy_tx_er, output wire logic phy_reset_n, input wire logic phy_int_n ); // Clock and reset wire clk_200mhz_ibufg; // Internal 125 MHz clock wire clk_mmcm_out; wire clk_int; wire clk90_mmcm_out; wire clk90_int; wire rst_int; wire clk_200mhz_mmcm_out; wire clk_200mhz_int; wire mmcm_rst = reset; wire mmcm_locked; wire mmcm_clkfb; IBUFGDS clk_200mhz_ibufgds_inst( .I(clk_200mhz_p), .IB(clk_200mhz_n), .O(clk_200mhz_ibufg) ); // MMCM instance MMCME2_BASE #( // 200 MHz input .CLKIN1_PERIOD(5.0), .REF_JITTER1(0.010), // 200 MHz input / 1 = 200 MHz PFD (range 10 MHz to 500 MHz) .DIVCLK_DIVIDE(1), // 200 MHz PFD * 5 = 1000 MHz VCO (range 600 MHz to 1440 MHz) .CLKFBOUT_MULT_F(5), .CLKFBOUT_PHASE(0), // 1000 MHz VCO / 8 = 125 MHz, 0 degrees .CLKOUT0_DIVIDE_F(8), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), // 1000 MHz VCO / 8 = 125 MHz, 90 degrees .CLKOUT1_DIVIDE(8), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(90), // 1000 MHz VCO / 5 = 200 MHz, 0 degrees .CLKOUT2_DIVIDE(5), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), // Not used .CLKOUT3_DIVIDE(1), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), // Not used .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT4_CASCADE("FALSE"), // Not used .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), // Not used .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), // optimized bandwidth .BANDWIDTH("OPTIMIZED"), // don't wait for lock during startup .STARTUP_WAIT("FALSE") ) clk_mmcm_inst ( // 200 MHz input .CLKIN1(clk_200mhz_ibufg), // direct clkfb feeback .CLKFBIN(mmcm_clkfb), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), // 125 MHz, 0 degrees .CLKOUT0(clk_mmcm_out), .CLKOUT0B(), // 125 MHz, 90 degrees .CLKOUT1(clk90_mmcm_out), .CLKOUT1B(), // 200 MHz, 0 degrees .CLKOUT2(clk_200mhz_mmcm_out), .CLKOUT2B(), // Not used .CLKOUT3(), .CLKOUT3B(), // Not used .CLKOUT4(), // Not used .CLKOUT5(), // Not used .CLKOUT6(), // reset input .RST(mmcm_rst), // don't power down .PWRDWN(1'b0), // locked output .LOCKED(mmcm_locked) ); BUFG clk_bufg_inst ( .I(clk_mmcm_out), .O(clk_int) ); BUFG clk90_bufg_inst ( .I(clk90_mmcm_out), .O(clk90_int) ); BUFG clk_200mhz_bufg_inst ( .I(clk_200mhz_mmcm_out), .O(clk_200mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_inst ( .clk(clk_int), .rst(~mmcm_locked), .out(rst_int) ); // GPIO wire btnu_int; wire btnl_int; wire btnd_int; wire btnr_int; wire btnc_int; wire [3:0] sw_int; taxi_debounce_switch #( .WIDTH(9), .N(4), .RATE(125000) ) debounce_switch_inst ( .clk(clk_int), .rst(rst_int), .in({btnu, btnl, btnd, btnr, btnc, sw}), .out({btnu_int, btnl_int, btnd_int, btnr_int, btnc_int, sw_int}) ); wire uart_rxd_int; wire uart_cts_int; taxi_sync_signal #( .WIDTH(2), .N(2) ) sync_signal_inst ( .clk(clk_int), .in({uart_rxd, uart_cts}), .out({uart_rxd_int, uart_cts_int}) ); wire [7:0] led_int; // SGMII interface to PHY wire phy_sgmii_clk_int; wire phy_sgmii_rst_int; wire phy_sgmii_clk_en_int; wire [7:0] phy_sgmii_txd_int; wire phy_sgmii_tx_en_int; wire phy_sgmii_tx_er_int; wire [7:0] phy_sgmii_rxd_int; wire phy_sgmii_rx_dv_int; wire phy_sgmii_rx_er_int; wire sgmii_gtrefclk; wire sgmii_gtrefclk_bufg; wire sgmii_txuserclk; wire sgmii_txuserclk2; wire sgmii_rxuserclk; wire sgmii_rxuserclk2; wire sgmii_pma_reset; wire sgmii_mmcm_locked; wire phy_sgmii_resetdone; assign phy_sgmii_clk_int = sgmii_txuserclk2; taxi_sync_reset #( .N(4) ) sync_reset_sgmii_inst ( .clk(phy_sgmii_clk_int), .rst(rst_int || !phy_sgmii_resetdone), .out(phy_sgmii_rst_int) ); wire [15:0] sgmii_status_vect; wire sgmii_status_link_status = sgmii_status_vect[0]; wire sgmii_status_link_synchronization = sgmii_status_vect[1]; wire sgmii_status_rudi_c = sgmii_status_vect[2]; wire sgmii_status_rudi_i = sgmii_status_vect[3]; wire sgmii_status_rudi_invalid = sgmii_status_vect[4]; wire sgmii_status_rxdisperr = sgmii_status_vect[5]; wire sgmii_status_rxnotintable = sgmii_status_vect[6]; wire sgmii_status_phy_link_status = sgmii_status_vect[7]; wire [1:0] sgmii_status_remote_fault_encdg = sgmii_status_vect[9:8]; wire [1:0] sgmii_status_speed = sgmii_status_vect[11:10]; wire sgmii_status_duplex = sgmii_status_vect[12]; wire sgmii_status_remote_fault = sgmii_status_vect[13]; wire [1:0] sgmii_status_pause = sgmii_status_vect[15:14]; wire [4:0] sgmii_config_vect; assign sgmii_config_vect[4] = 1'b1; // autonegotiation enable assign sgmii_config_vect[3] = 1'b0; // isolate assign sgmii_config_vect[2] = 1'b0; // power down assign sgmii_config_vect[1] = 1'b0; // loopback enable assign sgmii_config_vect[0] = 1'b0; // unidirectional enable wire [15:0] sgmii_an_config_vect; assign sgmii_an_config_vect[15] = 1'b1; // SGMII link status assign sgmii_an_config_vect[14] = 1'b1; // SGMII Acknowledge assign sgmii_an_config_vect[13:12] = 2'b01; // full duplex assign sgmii_an_config_vect[11:10] = 2'b10; // SGMII speed assign sgmii_an_config_vect[9] = 1'b0; // reserved assign sgmii_an_config_vect[8:7] = 2'b00; // pause frames - SGMII reserved assign sgmii_an_config_vect[6] = 1'b0; // reserved assign sgmii_an_config_vect[5] = 1'b0; // full duplex - SGMII reserved assign sgmii_an_config_vect[4:1] = 4'b0000; // reserved assign sgmii_an_config_vect[0] = 1'b1; // SGMII sgmii_pcs_pma_0 sgmii_pcspma ( // Transceiver Interface .gtrefclk_p (sgmii_clk_p), .gtrefclk_n (sgmii_clk_n), .gtrefclk_out (sgmii_gtrefclk), .gtrefclk_bufg_out (sgmii_gtrefclk_bufg), .txp (phy_sgmii_tx_p), .txn (phy_sgmii_tx_n), .rxp (phy_sgmii_rx_p), .rxn (phy_sgmii_rx_n), .resetdone (phy_sgmii_resetdone), .userclk_out (sgmii_txuserclk), .userclk2_out (sgmii_txuserclk2), .rxuserclk_out (sgmii_rxuserclk), .rxuserclk2_out (sgmii_rxuserclk2), .independent_clock_bufg(clk_int), .pma_reset_out (sgmii_pma_reset), .mmcm_locked_out (sgmii_mmcm_locked), .gt0_qplloutclk_out (), .gt0_qplloutrefclk_out (), // GMII Interface .sgmii_clk_r (), .sgmii_clk_f (), .sgmii_clk_en (phy_sgmii_clk_en_int), .gmii_txd (phy_sgmii_txd_int), .gmii_tx_en (phy_sgmii_tx_en_int), .gmii_tx_er (phy_sgmii_tx_er_int), .gmii_rxd (phy_sgmii_rxd_int), .gmii_rx_dv (phy_sgmii_rx_dv_int), .gmii_rx_er (phy_sgmii_rx_er_int), .gmii_isolate (), // Management: Alternative to MDIO Interface .configuration_vector (sgmii_config_vect), .an_interrupt (), .an_adv_config_vector (sgmii_an_config_vect), .an_restart_config (1'b0), // Speed Control .speed_is_10_100 (sgmii_status_speed != 2'b10), .speed_is_100 (sgmii_status_speed == 2'b01), // General IO's .status_vector (sgmii_status_vect), .reset (rst_int), .signal_detect (1'b1) ); // 1000BASE-X SFP wire sfp_gmii_clk_int; wire sfp_gmii_rst_int; wire sfp_gmii_clk_en_int; wire [7:0] sfp_gmii_txd_int; wire sfp_gmii_tx_en_int; wire sfp_gmii_tx_er_int; wire [7:0] sfp_gmii_rxd_int; wire sfp_gmii_rx_dv_int; wire sfp_gmii_rx_er_int; wire sfp_gmii_txuserclk2 = sgmii_txuserclk2; wire sfp_gmii_resetdone; assign sfp_gmii_clk_int = sfp_gmii_txuserclk2; taxi_sync_reset #( .N(4) ) sync_reset_sfp_inst ( .clk(sfp_gmii_clk_int), .rst(rst_int || !sfp_gmii_resetdone), .out(sfp_gmii_rst_int) ); wire [15:0] sfp_status_vect; wire sfp_status_link_status = sfp_status_vect[0]; wire sfp_status_link_synchronization = sfp_status_vect[1]; wire sfp_status_rudi_c = sfp_status_vect[2]; wire sfp_status_rudi_i = sfp_status_vect[3]; wire sfp_status_rudi_invalid = sfp_status_vect[4]; wire sfp_status_rxdisperr = sfp_status_vect[5]; wire sfp_status_rxnotintable = sfp_status_vect[6]; wire sfp_status_phy_link_status = sfp_status_vect[7]; wire [1:0] sfp_status_remote_fault_encdg = sfp_status_vect[9:8]; wire [1:0] sfp_status_speed = sfp_status_vect[11:10]; wire sfp_status_duplex = sfp_status_vect[12]; wire sfp_status_remote_fault = sfp_status_vect[13]; wire [1:0] sfp_status_pause = sfp_status_vect[15:14]; wire [4:0] sfp_config_vect; assign sfp_config_vect[4] = 1'b0; // autonegotiation enable assign sfp_config_vect[3] = 1'b0; // isolate assign sfp_config_vect[2] = 1'b0; // power down assign sfp_config_vect[1] = 1'b0; // loopback enable assign sfp_config_vect[0] = 1'b0; // unidirectional enable basex_pcs_pma_0 sfp_pcspma ( // Transceiver Interface .gtrefclk(sgmii_gtrefclk), .gtrefclk_bufg(sgmii_gtrefclk_bufg), .txp(sfp_tx_p), .txn(sfp_tx_n), .rxp(sfp_rx_p), .rxn(sfp_rx_n), .independent_clock_bufg(clk_int), .txoutclk(), .rxoutclk(), .resetdone(sfp_gmii_resetdone), .cplllock(), .mmcm_reset(), .userclk(sgmii_txuserclk), .userclk2(sgmii_txuserclk2), .pma_reset(sgmii_pma_reset), .mmcm_locked(sgmii_mmcm_locked), .rxuserclk(sgmii_rxuserclk), .rxuserclk2(sgmii_rxuserclk2), // GMII Interface .gmii_txd(sfp_gmii_txd_int), .gmii_tx_en(sfp_gmii_tx_en_int), .gmii_tx_er(sfp_gmii_tx_er_int), .gmii_rxd(sfp_gmii_rxd_int), .gmii_rx_dv(sfp_gmii_rx_dv_int), .gmii_rx_er(sfp_gmii_rx_er_int), .gmii_isolate(), // Management: Alternative to MDIO Interface .configuration_vector(sfp_config_vect), // General IO's .status_vector(sfp_status_vect), .reset(rst_int), .signal_detect(1'b1), .gt0_qplloutclk_in(1'b0), .gt0_qplloutrefclk_in(1'b0), .gt0_rxchariscomma_out(), .gt0_rxcharisk_out(), .gt0_rxbyteisaligned_out(), .gt0_rxbyterealign_out(), .gt0_rxcommadet_out(), .gt0_txpolarity_in(SFP_INVERT), .gt0_txdiffctrl_in(4'b1000), .gt0_txpostcursor_in(5'b00000), .gt0_txprecursor_in(5'b00000), .gt0_rxpolarity_in(SFP_INVERT), .gt0_txinhibit_in(1'b0), .gt0_txprbssel_in(3'b000), .gt0_txprbsforceerr_in(1'b0), .gt0_rxprbscntreset_in(1'b0), .gt0_rxprbserr_out(), .gt0_rxprbssel_in(3'b000), .gt0_loopback_in(3'b000), .gt0_txresetdone_out(), .gt0_rxresetdone_out(), .gt0_rxdisperr_out(), .gt0_txbufstatus_out(), .gt0_rxnotintable_out(), .gt0_eyescanreset_in(1'b0), .gt0_eyescandataerror_out(), .gt0_eyescantrigger_in(1'b0), .gt0_rxcdrhold_in(1'b0), .gt0_rxpmareset_in(1'b0), .gt0_txpmareset_in(1'b0), .gt0_rxpcsreset_in(1'b0), .gt0_txpcsreset_in(1'b0), .gt0_rxbufreset_in(1'b0), .gt0_rxbufstatus_out(), .gt0_rxdfelpmreset_in(1'b0), .gt0_rxdfeagcovrden_in(1'b0), .gt0_rxlpmen_in(1'b1), .gt0_rxmonitorout_out(), .gt0_rxmonitorsel_in(2'b00), .gt0_drpaddr_in(9'd0), .gt0_drpclk_in(1'b0), .gt0_drpdi_in(9'd0), .gt0_drpdo_out(), .gt0_drpen_in(1'b0), .gt0_drprdy_out(), .gt0_drpwe_in(1'b0), .gt0_dmonitorout_out() ); assign sfp_gmii_clk_en_int = 1'b1; // SGMII interface debug: // SW4:1 (sw[3]) off for payload byte, on for status vector // SW4:2 (sw[2]) off for BASE-T port (SGMII), on for SFP // SW4:4 (sw[0]) off for LSB of status vector, on for MSB wire [15:0] sel_sv = sw[2] ? sfp_status_vect : sgmii_status_vect; assign led = sw[3] ? (sw[0] ? sel_sv[15:8] : sel_sv[7:0]) : led_int; wire phy_rgmii_rx_clk_int; wire [3:0] phy_rgmii_rxd_int; wire phy_rgmii_rx_ctl_int; wire phy_rgmii_tx_clk_int; wire [3:0] phy_rgmii_txd_int; wire phy_rgmii_tx_ctl_int; wire phy_gmii_rx_clk_int; wire [7:0] phy_gmii_rxd_int; wire phy_gmii_rx_dv_int; wire phy_gmii_rx_er_int; wire phy_gmii_gtx_clk_int; wire phy_gmii_tx_clk_int; wire [7:0] phy_gmii_txd_int; wire phy_gmii_tx_en_int; wire phy_gmii_tx_er_int; if (BASET_PHY_TYPE == "RGMII") begin : phy_if assign phy_rgmii_rx_clk_int = phy_rx_clk; // IODELAY elements for RGMII interface to PHY IDELAYCTRL idelayctrl_inst ( .REFCLK(clk_200mhz_int), .RST(rst_int), .RDY() ); for (genvar n = 0; n < 4; n = n + 1) begin : phy_rxd_idelay_bit IDELAYE2 #( .IDELAY_TYPE("FIXED") ) idelay_inst ( .IDATAIN(phy_rxd[n]), .DATAOUT(phy_rgmii_rxd_int[n]), .DATAIN(1'b0), .C(1'b0), .CE(1'b0), .INC(1'b0), .CINVCTRL(1'b0), .CNTVALUEIN(5'd0), .CNTVALUEOUT(), .LD(1'b0), .LDPIPEEN(1'b0), .REGRST(1'b0) ); end IDELAYE2 #( .IDELAY_TYPE("FIXED") ) phy_rx_ctl_idelay ( .IDATAIN(phy_rx_dv), .DATAOUT(phy_rgmii_rx_ctl_int), .DATAIN(1'b0), .C(1'b0), .CE(1'b0), .INC(1'b0), .CINVCTRL(1'b0), .CNTVALUEIN(5'd0), .CNTVALUEOUT(), .LD(1'b0), .LDPIPEEN(1'b0), .REGRST(1'b0) ); assign phy_gtx_clk = phy_rgmii_tx_clk_int; assign phy_txd[3:0] = phy_rgmii_txd_int; assign phy_tx_en = phy_rgmii_tx_ctl_int; assign phy_txd[7:4] = '0; assign phy_tx_er = 1'b0; assign phy_gmii_rx_clk_int = 1'b0; assign phy_gmii_rxd_int = '0; assign phy_gmii_rx_dv_int = 1'b0; assign phy_gmii_rx_er_int = 1'b0; assign phy_gmii_tx_clk_int = 1'b0; end else begin : phy_if assign phy_rgmii_rx_clk_int = 1'b0; assign phy_rgmii_rxd_int = '0; assign phy_rgmii_rx_ctl_int = 1'b0; assign phy_gmii_rx_clk_int = phy_rx_clk; assign phy_gmii_rxd_int = phy_rxd; assign phy_gmii_rx_dv_int = phy_rx_dv; assign phy_gmii_rx_er_int = phy_rx_er; assign phy_gtx_clk = phy_gmii_gtx_clk_int; assign phy_gmii_tx_clk_int = phy_tx_clk; assign phy_txd = phy_gmii_txd_int; assign phy_tx_en = phy_gmii_tx_en_int; assign phy_tx_er = phy_gmii_tx_er_int; end fpga_core #( .SIM(SIM), .VENDOR(VENDOR), .FAMILY(FAMILY), .USE_CLK90(USE_CLK90), .BASET_PHY_TYPE(BASET_PHY_TYPE), .SFP_INVERT(SFP_INVERT) ) core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk(clk_int), .clk90(clk90_int), .rst(rst_int), /* * GPIO */ .btnu(btnu_int), .btnl(btnl_int), .btnd(btnd_int), .btnr(btnr_int), .btnc(btnc_int), .sw(sw_int), .led(led_int), /* * UART: 115200 bps, 8N1 */ .uart_rxd(uart_rxd_int), .uart_txd(uart_txd), .uart_rts(uart_rts), .uart_cts(uart_cts_int), /* * Ethernet: 1000BASE-X SFP */ .sfp_gmii_clk(sfp_gmii_clk_int), .sfp_gmii_rst(sfp_gmii_rst_int), .sfp_gmii_clk_en(sfp_gmii_clk_en_int), .sfp_gmii_rxd(sfp_gmii_rxd_int), .sfp_gmii_rx_dv(sfp_gmii_rx_dv_int), .sfp_gmii_rx_er(sfp_gmii_rx_er_int), .sfp_gmii_txd(sfp_gmii_txd_int), .sfp_gmii_tx_en(sfp_gmii_tx_en_int), .sfp_gmii_tx_er(sfp_gmii_tx_er_int), .sfp_tx_disable_b(sfp_tx_disable_b), /* * Ethernet: 1000BASE-T GMII/RGMII/SGMII */ .phy_sgmii_clk(phy_sgmii_clk_int), .phy_sgmii_rst(phy_sgmii_rst_int), .phy_sgmii_clk_en(phy_sgmii_clk_en_int), .phy_sgmii_rxd(phy_sgmii_rxd_int), .phy_sgmii_rx_dv(phy_sgmii_rx_dv_int), .phy_sgmii_rx_er(phy_sgmii_rx_er_int), .phy_sgmii_txd(phy_sgmii_txd_int), .phy_sgmii_tx_en(phy_sgmii_tx_en_int), .phy_sgmii_tx_er(phy_sgmii_tx_er_int), .phy_rgmii_rx_clk(phy_rgmii_rx_clk_int), .phy_rgmii_rxd(phy_rgmii_rxd_int), .phy_rgmii_rx_ctl(phy_rgmii_rx_ctl_int), .phy_rgmii_tx_clk(phy_rgmii_tx_clk_int), .phy_rgmii_txd(phy_rgmii_txd_int), .phy_rgmii_tx_ctl(phy_rgmii_tx_ctl_int), .phy_gmii_rx_clk(phy_gmii_rx_clk_int), .phy_gmii_rxd(phy_gmii_rxd_int), .phy_gmii_rx_dv(phy_gmii_rx_dv_int), .phy_gmii_rx_er(phy_gmii_rx_er_int), .phy_gmii_gtx_clk(phy_gmii_gtx_clk_int), .phy_gmii_tx_clk(phy_gmii_tx_clk_int), .phy_gmii_txd(phy_gmii_txd_int), .phy_gmii_tx_en(phy_gmii_tx_en_int), .phy_gmii_tx_er(phy_gmii_tx_er_int), .phy_reset_n(phy_reset_n), .phy_int_n(phy_int_n) ); endmodule `resetall