// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2013-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream FIFO */ module taxi_axis_fifo # ( // FIFO depth in words // KEEP_W words per cycle if KEEP_EN set // Rounded up to nearest power of 2 cycles parameter DEPTH = 4096, // number of RAM pipeline registers parameter RAM_PIPELINE = 1, // use output FIFO // When set, the RAM read enable and pipeline clock enables are removed parameter logic OUTPUT_FIFO_EN = 1'b0, // Frame FIFO mode - operate on frames instead of cycles // When set, m_axis_tvalid will not be deasserted within a frame // Requires LAST_EN set parameter logic FRAME_FIFO = 1'b0, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames larger than FIFO // Requires FRAME_FIFO set parameter logic DROP_OVERSIZE_FRAME = FRAME_FIFO, // Drop frames marked bad // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter logic DROP_BAD_FRAME = 1'b0, // Drop incoming frames when full // When set, s_axis.tready is always asserted // Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set parameter logic DROP_WHEN_FULL = 1'b0, // Mark incoming frames as bad frames when full // When set, s_axis.tready is always asserted // Requires FRAME_FIFO to be clear parameter logic MARK_WHEN_FULL = 1'b0, // Enable pause request input parameter logic PAUSE_EN = 1'b0, // Pause between frames parameter logic FRAME_PAUSE = FRAME_FIFO ) ( input wire logic clk, input wire logic rst, /* * AXI4-Stream input (sink) */ taxi_axis_if.snk s_axis, /* * AXI4-Stream output (source) */ taxi_axis_if.src m_axis, /* * Pause */ input wire logic pause_req = 1'b0, output wire logic pause_ack, /* * Status */ output wire logic [$clog2(DEPTH):0] status_depth, output wire logic [$clog2(DEPTH):0] status_depth_commit, output wire logic status_overflow, output wire logic status_bad_frame, output wire logic status_good_frame ); // extract parameters localparam DATA_W = s_axis.DATA_W; localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN; localparam KEEP_W = s_axis.KEEP_W; localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN; localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN; localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN; localparam ID_W = s_axis.ID_W; localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN; localparam DEST_W = s_axis.DEST_W; localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN; localparam USER_W = s_axis.USER_W; localparam CL_DEPTH = $clog2(DEPTH); localparam CL_KEEP_W = $clog2(KEEP_W); localparam FIFO_AW = (KEEP_EN && KEEP_W > 1) ? $clog2(DEPTH/KEEP_W) : CL_DEPTH; localparam OUTPUT_FIFO_AW = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7); // check configuration if (FRAME_FIFO && !LAST_EN) $fatal(0, "Error: FRAME_FIFO set requires LAST_EN set (instance %m)"); if (DROP_OVERSIZE_FRAME && !FRAME_FIFO) $fatal(0, "Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)"); if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) $fatal(0, "Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) $fatal(0, "Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)"); if ((DROP_BAD_FRAME || MARK_WHEN_FULL) && (USER_BAD_FRAME_MASK & {USER_W{1'b1}}) == 0) $fatal(0, "Error: Invalid USER_BAD_FRAME_MASK value (instance %m)"); if (MARK_WHEN_FULL && FRAME_FIFO) $fatal(0, "Error: MARK_WHEN_FULL is not compatible with FRAME_FIFO (instance %m)"); if (MARK_WHEN_FULL && !LAST_EN) $fatal(0, "Error: MARK_WHEN_FULL set requires LAST_EN set (instance %m)"); if (m_axis.DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (KEEP_EN && m_axis.KEEP_W != KEEP_W) $fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)"); localparam KEEP_OFFSET = DATA_W; localparam STRB_OFFSET = KEEP_OFFSET + (KEEP_EN ? KEEP_W : 0); localparam LAST_OFFSET = STRB_OFFSET + (STRB_EN ? KEEP_W : 0); localparam ID_OFFSET = LAST_OFFSET + (LAST_EN ? 1 : 0); localparam DEST_OFFSET = ID_OFFSET + (ID_EN ? ID_W : 0); localparam USER_OFFSET = DEST_OFFSET + (DEST_EN ? DEST_W : 0); localparam WIDTH = USER_OFFSET + (USER_EN ? USER_W : 0); logic [FIFO_AW:0] wr_ptr_reg = '0; logic [FIFO_AW:0] wr_ptr_commit_reg = '0; logic [FIFO_AW:0] rd_ptr_reg = '0; (* ramstyle = "no_rw_check" *) logic [WIDTH-1:0] mem[(2**FIFO_AW)-1:0]; (* shreg_extract = "no" *) logic [WIDTH-1:0] mem_rd_data_pipe_reg[RAM_PIPELINE+1-1:0]; logic [RAM_PIPELINE+1-1:0] mem_rd_valid_pipe_reg = '0; // full when first MSB differs but the rest match wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {FIFO_AW{1'b0}}}); // empty when pointers match exactly wire empty = wr_ptr_commit_reg == rd_ptr_reg; // overflow within packet, same as full but based on write commit wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {FIFO_AW{1'b0}}}); logic s_frame_reg = 1'b0; logic drop_frame_reg = 1'b0; logic mark_frame_reg = 1'b0; logic send_frame_reg = 1'b0; logic [FIFO_AW:0] depth_reg = '0; logic [FIFO_AW:0] depth_commit_reg = '0; logic overflow_reg = 1'b0; logic bad_frame_reg = 1'b0; logic good_frame_reg = 1'b0; assign s_axis.tready = FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : (!full || MARK_WHEN_FULL); wire [WIDTH-1:0] mem_wr_data; assign mem_wr_data[DATA_W-1:0] = s_axis.tdata; if (KEEP_EN) assign mem_wr_data[KEEP_OFFSET +: KEEP_W] = s_axis.tkeep; if (STRB_EN) assign mem_wr_data[STRB_OFFSET +: KEEP_W] = s_axis.tkeep; if (LAST_EN) assign mem_wr_data[LAST_OFFSET] = s_axis.tlast | mark_frame_reg; if (ID_EN) assign mem_wr_data[ID_OFFSET +: ID_W] = s_axis.tid; if (DEST_EN) assign mem_wr_data[DEST_OFFSET +: DEST_W] = s_axis.tdest; if (USER_EN) assign mem_wr_data[USER_OFFSET +: USER_W] = mark_frame_reg ? USER_BAD_FRAME_VALUE : s_axis.tuser; wire [WIDTH-1:0] mem_rd_data = mem_rd_data_pipe_reg[RAM_PIPELINE+1-1]; wire m_axis_tready_pipe; wire m_axis_tvalid_pipe = mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1]; wire [DATA_W-1:0] m_axis_tdata_pipe = mem_rd_data[DATA_W-1:0]; wire [KEEP_W-1:0] m_axis_tkeep_pipe; wire [KEEP_W-1:0] m_axis_tstrb_pipe; wire m_axis_tlast_pipe; wire [ID_W-1:0] m_axis_tid_pipe; wire [DEST_W-1:0] m_axis_tdest_pipe; wire [USER_W-1:0] m_axis_tuser_pipe; if (KEEP_EN) begin assign m_axis_tkeep_pipe = mem_rd_data[KEEP_OFFSET +: KEEP_W]; end else begin assign m_axis_tkeep_pipe = '1; end if (STRB_EN) begin assign m_axis_tstrb_pipe = mem_rd_data[STRB_OFFSET +: KEEP_W]; end else begin assign m_axis_tstrb_pipe = m_axis_tkeep_pipe; end if (LAST_EN) begin assign m_axis_tlast_pipe = mem_rd_data[LAST_OFFSET]; end else begin assign m_axis_tlast_pipe = 1'b1; end if (ID_EN) begin assign m_axis_tid_pipe = mem_rd_data[ID_OFFSET +: ID_W]; end else begin assign m_axis_tid_pipe = '0; end if (DEST_EN) begin assign m_axis_tdest_pipe = mem_rd_data[DEST_OFFSET +: DEST_W]; end else begin assign m_axis_tdest_pipe = '0; end if (USER_EN) begin assign m_axis_tuser_pipe = mem_rd_data[USER_OFFSET +: USER_W]; end else begin assign m_axis_tuser_pipe = '0; end wire m_axis_tready_out; wire m_axis_tvalid_out; wire [DATA_W-1:0] m_axis_tdata_out; wire [KEEP_W-1:0] m_axis_tkeep_out; wire [KEEP_W-1:0] m_axis_tstrb_out; wire m_axis_tlast_out; wire [ID_W-1:0] m_axis_tid_out; wire [DEST_W-1:0] m_axis_tdest_out; wire [USER_W-1:0] m_axis_tuser_out; wire pipe_ready; assign status_depth = (KEEP_EN && KEEP_W > 1) ? {depth_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(depth_reg); assign status_depth_commit = (KEEP_EN && KEEP_W > 1) ? {depth_commit_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(depth_commit_reg); assign status_overflow = overflow_reg; assign status_bad_frame = bad_frame_reg; assign status_good_frame = good_frame_reg; // Write logic always_ff @(posedge clk) begin overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; if (s_axis.tready && s_axis.tvalid && LAST_EN) begin // track input frame status s_frame_reg <= !s_axis.tlast; end if (FRAME_FIFO) begin // frame FIFO mode if (s_axis.tready && s_axis.tvalid) begin // transfer in if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin // full, packet overflow, or currently dropping frame // drop frame drop_frame_reg <= 1'b1; if (s_axis.tlast) begin // end of frame, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else begin // store it mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data; wr_ptr_reg <= wr_ptr_reg + 1; if (s_axis.tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin // end of frame or send frame send_frame_reg <= !s_axis.tlast; if (s_axis.tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis.tuser ^ USER_BAD_FRAME_VALUE)) begin // bad packet, reset write pointer wr_ptr_reg <= wr_ptr_commit_reg; bad_frame_reg <= 1'b1; end else begin // good packet or packet overflow, update write pointer wr_ptr_commit_reg <= wr_ptr_reg + 1; good_frame_reg <= s_axis.tlast; end end end end else if (s_axis.tvalid && full_wr && !DROP_OVERSIZE_FRAME) begin // data valid with packet overflow // update write pointer send_frame_reg <= 1'b1; wr_ptr_commit_reg <= wr_ptr_reg; end end else begin // normal FIFO mode if (s_axis.tready && s_axis.tvalid) begin if (drop_frame_reg && MARK_WHEN_FULL) begin // currently dropping frame if (s_axis.tlast) begin // end of frame if (!full && mark_frame_reg) begin // terminate marked frame mark_frame_reg <= 1'b0; mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end // end of frame, clear drop flag drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else if ((full || mark_frame_reg) && MARK_WHEN_FULL) begin // full or marking frame // drop frame; mark if this isn't the first cycle drop_frame_reg <= 1'b1; mark_frame_reg <= mark_frame_reg || s_frame_reg; if (s_axis.tlast) begin drop_frame_reg <= 1'b0; overflow_reg <= 1'b1; end end else begin // transfer in mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end end else if ((!full && !drop_frame_reg && mark_frame_reg) && MARK_WHEN_FULL) begin // terminate marked frame mark_frame_reg <= 1'b0; mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data; wr_ptr_reg <= wr_ptr_reg + 1; wr_ptr_commit_reg <= wr_ptr_reg + 1; end end if (rst) begin wr_ptr_reg <= '0; wr_ptr_commit_reg <= '0; s_frame_reg <= 1'b0; drop_frame_reg <= 1'b0; mark_frame_reg <= 1'b0; send_frame_reg <= 1'b0; overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; end end // Status always_ff @(posedge clk) begin depth_reg <= wr_ptr_reg - rd_ptr_reg; depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_reg; end // Read logic always_ff @(posedge clk) begin if (m_axis_tready_pipe) begin // output ready; invalidate stage mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0; end for (integer j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin if (m_axis_tready_pipe || ((RAM_PIPELINE+1)'(~mem_rd_valid_pipe_reg) >> j) != 0) begin // if (m_axis_tready_pipe || &mem_rd_valid_pipe_reg[1:1] == 0) begin // output ready or bubble in pipeline; transfer down pipeline mem_rd_valid_pipe_reg[j] <= mem_rd_valid_pipe_reg[j-1]; mem_rd_data_pipe_reg[j] <= mem_rd_data_pipe_reg[j-1]; mem_rd_valid_pipe_reg[j-1] <= 1'b0; end end if (m_axis_tready_pipe || &mem_rd_valid_pipe_reg == 0) begin // output ready or bubble in pipeline; read new data from FIFO mem_rd_valid_pipe_reg[0] <= 1'b0; mem_rd_data_pipe_reg[0] <= mem[rd_ptr_reg[FIFO_AW-1:0]]; if (!empty && pipe_ready) begin // not empty, increment pointer mem_rd_valid_pipe_reg[0] <= 1'b1; rd_ptr_reg <= rd_ptr_reg + 1; end end if (rst) begin rd_ptr_reg <= '0; mem_rd_valid_pipe_reg <= '0; end end if (!OUTPUT_FIFO_EN) begin assign pipe_ready = 1'b1; assign m_axis_tready_pipe = m_axis_tready_out; assign m_axis_tvalid_out = m_axis_tvalid_pipe; assign m_axis_tdata_out = m_axis_tdata_pipe; assign m_axis_tkeep_out = m_axis_tkeep_pipe; assign m_axis_tstrb_out = m_axis_tstrb_pipe; assign m_axis_tlast_out = m_axis_tlast_pipe; assign m_axis_tid_out = m_axis_tid_pipe; assign m_axis_tdest_out = m_axis_tdest_pipe; assign m_axis_tuser_out = m_axis_tuser_pipe; end else begin : output_fifo // output datapath logic logic [DATA_W-1:0] m_axis_tdata_reg = '0; logic [KEEP_W-1:0] m_axis_tkeep_reg = '0; logic [KEEP_W-1:0] m_axis_tstrb_reg = '0; logic m_axis_tvalid_reg = 1'b0; logic m_axis_tlast_reg = 1'b0; logic [ID_W-1:0] m_axis_tid_reg = '0; logic [DEST_W-1:0] m_axis_tdest_reg = '0; logic [USER_W-1:0] m_axis_tuser_reg = '0; logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_wr_ptr_reg = '0; logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_rd_ptr_reg = '0; logic out_fifo_half_full_reg = 1'b0; wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_AW{1'b0}}}); wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [DATA_W-1:0] out_fifo_tdata[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [KEEP_W-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [KEEP_W-1:0] out_fifo_tstrb[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic out_fifo_tlast[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [ID_W-1:0] out_fifo_tid[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [DEST_W-1:0] out_fifo_tdest[2**OUTPUT_FIFO_AW-1:0]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [USER_W-1:0] out_fifo_tuser[2**OUTPUT_FIFO_AW-1:0]; assign pipe_ready = !out_fifo_half_full_reg; assign m_axis_tready_pipe = 1'b1; assign m_axis_tdata_out = m_axis_tdata_reg; assign m_axis_tkeep_out = KEEP_EN ? m_axis_tkeep_reg : '1; assign m_axis_tstrb_out = STRB_EN ? m_axis_tstrb_reg : m_axis_tkeep_out; assign m_axis_tvalid_out = m_axis_tvalid_reg; assign m_axis_tlast_out = LAST_EN ? m_axis_tlast_reg : 1'b1; assign m_axis_tid_out = ID_EN ? m_axis_tid_reg : '0; assign m_axis_tdest_out = DEST_EN ? m_axis_tdest_reg : '0; assign m_axis_tuser_out = USER_EN ? m_axis_tuser_reg : '0; always_ff @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out; out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_AW-1); if (!out_fifo_full && m_axis_tvalid_pipe) begin out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdata_pipe; out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tkeep_pipe; out_fifo_tstrb[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tstrb_pipe; out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tlast_pipe; out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tid_pipe; out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdest_pipe; out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tuser_pipe; out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1; end if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tstrb_reg <= out_fifo_tstrb[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tvalid_reg <= 1'b1; m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]]; out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1; end if (rst) begin out_fifo_wr_ptr_reg <= '0; out_fifo_rd_ptr_reg <= '0; m_axis_tvalid_reg <= 1'b0; end end end if (PAUSE_EN) begin : pause // Pause logic logic pause_reg = 1'b0; logic pause_frame_reg = 1'b0; assign m_axis_tready_out = m_axis.tready && !pause_reg; assign m_axis.tvalid = m_axis_tvalid_out && !pause_reg; assign m_axis.tdata = m_axis_tdata_out; assign m_axis.tkeep = m_axis_tkeep_out; assign m_axis.tstrb = m_axis_tstrb_out; assign m_axis.tlast = m_axis_tlast_out; assign m_axis.tid = m_axis_tid_out; assign m_axis.tdest = m_axis_tdest_out; assign m_axis.tuser = m_axis_tuser_out; assign pause_ack = pause_reg; always_ff @(posedge clk) begin if (FRAME_PAUSE) begin if (pause_reg) begin // paused; update pause status pause_reg <= pause_req; end else if (m_axis_tvalid_out) begin // frame transfer; set frame bit pause_frame_reg <= 1'b1; if (m_axis.tready && m_axis.tlast) begin // end of frame; clear frame bit and update pause status pause_frame_reg <= 1'b0; pause_reg <= pause_req; end end else if (!pause_frame_reg) begin // idle; update pause status pause_reg <= pause_req; end end else begin pause_reg <= pause_req; end if (rst) begin pause_frame_reg <= 1'b0; pause_reg <= 1'b0; end end end else begin assign m_axis_tready_out = m_axis.tready; assign m_axis.tvalid = m_axis_tvalid_out; assign m_axis.tdata = m_axis_tdata_out; assign m_axis.tkeep = m_axis_tkeep_out; assign m_axis.tstrb = m_axis_tstrb_out; assign m_axis.tlast = m_axis_tlast_out; assign m_axis.tid = m_axis_tid_out; assign m_axis.tdest = m_axis_tdest_out; assign m_axis.tuser = m_axis_tuser_out; assign pause_ack = 1'b0; end endmodule `resetall