// SPDX-License-Identifier: MIT /* Copyright (c) 2014-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * FPGA top-level module */ module fpga ( /* * Clock: 125MHz LVDS * Reset: Push button, active high */ input wire logic clk_125mhz_p, input wire logic clk_125mhz_n, input wire logic reset, /* * GPIO */ input wire logic btnu, input wire logic btnl, input wire logic btnd, input wire logic btnr, input wire logic btnc, input wire logic [3:0] sw, output wire logic [7:0] led, /* * UART: 115200 bps, 8N1 */ input wire logic uart_rxd, output wire logic uart_txd, output wire logic uart_rts, input wire logic uart_cts, /* * Ethernet: 1000BASE-T SGMII */ input wire logic phy_sgmii_rx_p, input wire logic phy_sgmii_rx_n, output wire logic phy_sgmii_tx_p, output wire logic phy_sgmii_tx_n, input wire logic phy_sgmii_clk_p, input wire logic phy_sgmii_clk_n, output wire logic phy_reset_n, input wire logic phy_int_n, /* * Ethernet: SFP+ */ input wire logic sfp0_rx_p, input wire logic sfp0_rx_n, output wire logic sfp0_tx_p, output wire logic sfp0_tx_n, input wire logic sfp1_rx_p, input wire logic sfp1_rx_n, output wire logic sfp1_tx_p, output wire logic sfp1_tx_n, input wire logic sfp_mgt_refclk_0_p, input wire logic sfp_mgt_refclk_0_n, output wire logic sfp0_tx_disable_b, output wire logic sfp1_tx_disable_b ); // Clock and reset wire clk_125mhz_ibufg; // Internal 125 MHz clock wire clk_125mhz_mmcm_out; wire clk_125mhz_int; wire rst_125mhz_int; // Internal 62.5 MHz clock wire clk_62mhz_mmcm_out; wire clk_62mhz_int; wire mmcm_rst = reset; wire mmcm_locked; wire mmcm_clkfb; IBUFGDS #( .DIFF_TERM("FALSE"), .IBUF_LOW_PWR("FALSE") ) clk_125mhz_ibufg_inst ( .O (clk_125mhz_ibufg), .I (clk_125mhz_p), .IB (clk_125mhz_n) ); // MMCM instance MMCME3_BASE #( // 125 MHz input .CLKIN1_PERIOD(8.0), .REF_JITTER1(0.010), // 125 MHz input / 1 = 125 MHz PFD (range 10 MHz to 500 MHz) .DIVCLK_DIVIDE(1), // 125 MHz PFD * 10 = 1250 MHz VCO (range 600 MHz to 1440 MHz) .CLKFBOUT_MULT_F(10), .CLKFBOUT_PHASE(0), // 1250 MHz / 10 = 125 MHz, 0 degrees .CLKOUT0_DIVIDE_F(5), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), // 1250 MHz / 20 = 62.5 MHz, 0 degrees .CLKOUT1_DIVIDE(20), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(0), // Not used .CLKOUT2_DIVIDE(1), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), // Not used .CLKOUT3_DIVIDE(1), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), // Not used .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT4_CASCADE("FALSE"), // Not used .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), // Not used .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), // optimized bandwidth .BANDWIDTH("OPTIMIZED"), // don't wait for lock during startup .STARTUP_WAIT("FALSE") ) clk_mmcm_inst ( // 125 MHz input .CLKIN1(clk_125mhz_ibufg), // direct clkfb feeback .CLKFBIN(mmcm_clkfb), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), // 125 MHz, 0 degrees .CLKOUT0(clk_125mhz_mmcm_out), .CLKOUT0B(), // 125 MHz, 0 degrees .CLKOUT1(clk_62mhz_mmcm_out), .CLKOUT1B(), // Not used .CLKOUT2(), .CLKOUT2B(), // Not used .CLKOUT3(), .CLKOUT3B(), // Not used .CLKOUT4(), // Not used .CLKOUT5(), // Not used .CLKOUT6(), // reset input .RST(mmcm_rst), // don't power down .PWRDWN(1'b0), // locked output .LOCKED(mmcm_locked) ); BUFG clk_125mhz_bufg_inst ( .I(clk_125mhz_mmcm_out), .O(clk_125mhz_int) ); BUFG clk_62mhz_bufg_inst ( .I(clk_62mhz_mmcm_out), .O(clk_62mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_125mhz_inst ( .clk(clk_125mhz_int), .rst(~mmcm_locked), .out(rst_125mhz_int) ); // GPIO wire btnu_int; wire btnl_int; wire btnd_int; wire btnr_int; wire btnc_int; wire [3:0] sw_int; taxi_debounce_switch #( .WIDTH(9), .N(4), .RATE(125000) ) debounce_switch_inst ( .clk(clk_125mhz_int), .rst(rst_125mhz_int), .in({btnu, btnl, btnd, btnr, btnc, sw}), .out({btnu_int, btnl_int, btnd_int, btnr_int, btnc_int, sw_int}) ); wire uart_rxd_int; wire uart_cts_int; taxi_sync_signal #( .WIDTH(2), .N(2) ) sync_signal_inst ( .clk(clk_125mhz_int), .in({uart_rxd, uart_cts}), .out({uart_rxd_int, uart_cts_int}) ); wire [7:0] led_int; // SGMII interface to PHY wire phy_gmii_clk_int; wire phy_gmii_rst_int; wire phy_gmii_clk_en_int; wire [7:0] phy_gmii_txd_int; wire phy_gmii_tx_en_int; wire phy_gmii_tx_er_int; wire [7:0] phy_gmii_rxd_int; wire phy_gmii_rx_dv_int; wire phy_gmii_rx_er_int; wire [15:0] sgmii_status_vect; wire sgmii_status_link_status = sgmii_status_vect[0]; wire sgmii_status_link_synchronization = sgmii_status_vect[1]; wire sgmii_status_rudi_c = sgmii_status_vect[2]; wire sgmii_status_rudi_i = sgmii_status_vect[3]; wire sgmii_status_rudi_invalid = sgmii_status_vect[4]; wire sgmii_status_rxdisperr = sgmii_status_vect[5]; wire sgmii_status_rxnotintable = sgmii_status_vect[6]; wire sgmii_status_phy_link_status = sgmii_status_vect[7]; wire [1:0] sgmii_status_remote_fault_encdg = sgmii_status_vect[9:8]; wire [1:0] sgmii_status_speed = sgmii_status_vect[11:10]; wire sgmii_status_duplex = sgmii_status_vect[12]; wire sgmii_status_remote_fault = sgmii_status_vect[13]; wire [1:0] sgmii_status_pause = sgmii_status_vect[15:14]; wire [4:0] sgmii_config_vect; assign sgmii_config_vect[4] = 1'b1; // autonegotiation enable assign sgmii_config_vect[3] = 1'b0; // isolate assign sgmii_config_vect[2] = 1'b0; // power down assign sgmii_config_vect[1] = 1'b0; // loopback enable assign sgmii_config_vect[0] = 1'b0; // unidirectional enable wire [15:0] sgmii_an_config_vect; assign sgmii_an_config_vect[15] = 1'b1; // SGMII link status assign sgmii_an_config_vect[14] = 1'b1; // SGMII Acknowledge assign sgmii_an_config_vect[13:12] = 2'b01; // full duplex assign sgmii_an_config_vect[11:10] = 2'b10; // SGMII speed assign sgmii_an_config_vect[9] = 1'b0; // reserved assign sgmii_an_config_vect[8:7] = 2'b00; // pause frames - SGMII reserved assign sgmii_an_config_vect[6] = 1'b0; // reserved assign sgmii_an_config_vect[5] = 1'b0; // full duplex - SGMII reserved assign sgmii_an_config_vect[4:1] = 4'b0000; // reserved assign sgmii_an_config_vect[0] = 1'b1; // SGMII sgmii_pcs_pma_0 eth_pcspma ( // SGMII .txp (phy_sgmii_tx_p), .txn (phy_sgmii_tx_n), .rxp (phy_sgmii_rx_p), .rxn (phy_sgmii_rx_n), // Ref clock from PHY .refclk625_p (phy_sgmii_clk_p), .refclk625_n (phy_sgmii_clk_n), // async reset .reset (rst_125mhz_int), // clock and reset outputs .clk125_out (phy_gmii_clk_int), .clk625_out (), .clk312_out (), .rst_125_out (phy_gmii_rst_int), .idelay_rdy_out (), .mmcm_locked_out (), // MAC clocking .sgmii_clk_r (), .sgmii_clk_f (), .sgmii_clk_en (phy_gmii_clk_en_int), // Speed control .speed_is_10_100 (sgmii_status_speed != 2'b10), .speed_is_100 (sgmii_status_speed == 2'b01), // Internal GMII .gmii_txd (phy_gmii_txd_int), .gmii_tx_en (phy_gmii_tx_en_int), .gmii_tx_er (phy_gmii_tx_er_int), .gmii_rxd (phy_gmii_rxd_int), .gmii_rx_dv (phy_gmii_rx_dv_int), .gmii_rx_er (phy_gmii_rx_er_int), .gmii_isolate (), // Configuration .configuration_vector (sgmii_config_vect), .an_interrupt (), .an_adv_config_vector (sgmii_an_config_vect), .an_restart_config (1'b0), // Status .status_vector (sgmii_status_vect), .signal_detect (1'b1) ); // 1000BASE-X SFP wire sfp0_gmii_clk_int; wire sfp0_gmii_rst_int; wire sfp0_gmii_clk_en_int; wire [7:0] sfp0_gmii_txd_int; wire sfp0_gmii_tx_en_int; wire sfp0_gmii_tx_er_int; wire [7:0] sfp0_gmii_rxd_int; wire sfp0_gmii_rx_dv_int; wire sfp0_gmii_rx_er_int; wire sfp0_gmii_gtrefclk; wire sfp0_gmii_txuserclk; wire sfp0_gmii_txuserclk2; wire sfp0_gmii_rxuserclk; wire sfp0_gmii_rxuserclk2; wire sfp0_gmii_resetdone; wire sfp0_gmii_pmareset; wire sfp0_gmii_mmcm_locked; assign sfp0_gmii_clk_int = sfp0_gmii_txuserclk2; taxi_sync_reset #( .N(4) ) sync_reset_sfp0_inst ( .clk(sfp0_gmii_clk_int), .rst(rst_125mhz_int || !sfp0_gmii_resetdone), .out(sfp0_gmii_rst_int) ); wire [15:0] sfp0_status_vect; wire sfp0_status_link_status = sfp0_status_vect[0]; wire sfp0_status_link_synchronization = sfp0_status_vect[1]; wire sfp0_status_rudi_c = sfp0_status_vect[2]; wire sfp0_status_rudi_i = sfp0_status_vect[3]; wire sfp0_status_rudi_invalid = sfp0_status_vect[4]; wire sfp0_status_rxdisperr = sfp0_status_vect[5]; wire sfp0_status_rxnotintable = sfp0_status_vect[6]; wire sfp0_status_phy_link_status = sfp0_status_vect[7]; wire [1:0] sfp0_status_remote_fault_encdg = sfp0_status_vect[9:8]; wire [1:0] sfp0_status_speed = sfp0_status_vect[11:10]; wire sfp0_status_duplex = sfp0_status_vect[12]; wire sfp0_status_remote_fault = sfp0_status_vect[13]; wire [1:0] sfp0_status_pause = sfp0_status_vect[15:14]; wire [4:0] sfp0_config_vect; assign sfp0_config_vect[4] = 1'b0; // autonegotiation enable assign sfp0_config_vect[3] = 1'b0; // isolate assign sfp0_config_vect[2] = 1'b0; // power down assign sfp0_config_vect[1] = 1'b0; // loopback enable assign sfp0_config_vect[0] = 1'b0; // unidirectional enable basex_pcs_pma_0 sfp0_pcspma ( .gtrefclk_p(sfp_mgt_refclk_0_p), .gtrefclk_n(sfp_mgt_refclk_0_n), .gtrefclk_out(sfp0_gmii_gtrefclk), .txn(sfp0_tx_n), .txp(sfp0_tx_p), .rxn(sfp0_rx_n), .rxp(sfp0_rx_p), .independent_clock_bufg(clk_62mhz_int), .userclk_out(sfp0_gmii_txuserclk), .userclk2_out(sfp0_gmii_txuserclk2), .rxuserclk_out(sfp0_gmii_rxuserclk), .rxuserclk2_out(sfp0_gmii_rxuserclk2), .gtpowergood(), .resetdone(sfp0_gmii_resetdone), .pma_reset_out(sfp0_gmii_pmareset), .mmcm_locked_out(sfp0_gmii_mmcm_locked), .gmii_txd(sfp0_gmii_txd_int), .gmii_tx_en(sfp0_gmii_tx_en_int), .gmii_tx_er(sfp0_gmii_tx_er_int), .gmii_rxd(sfp0_gmii_rxd_int), .gmii_rx_dv(sfp0_gmii_rx_dv_int), .gmii_rx_er(sfp0_gmii_rx_er_int), .gmii_isolate(), .configuration_vector(sfp0_config_vect), .status_vector(sfp0_status_vect), .reset(rst_125mhz_int), .signal_detect(1'b1) ); assign sfp0_gmii_clk_en_int = 1'b1; wire sfp1_gmii_clk_int; wire sfp1_gmii_rst_int; wire sfp1_gmii_clk_en_int; wire [7:0] sfp1_gmii_txd_int; wire sfp1_gmii_tx_en_int; wire sfp1_gmii_tx_er_int; wire [7:0] sfp1_gmii_rxd_int; wire sfp1_gmii_rx_dv_int; wire sfp1_gmii_rx_er_int; wire sfp1_gmii_txuserclk2 = sfp0_gmii_txuserclk2; wire sfp1_gmii_resetdone; assign sfp1_gmii_clk_int = sfp1_gmii_txuserclk2; taxi_sync_reset #( .N(4) ) sync_reset_sfp1_inst ( .clk(sfp1_gmii_clk_int), .rst(rst_125mhz_int || !sfp1_gmii_resetdone), .out(sfp1_gmii_rst_int) ); wire [15:0] sfp1_status_vect; wire sfp1_status_link_status = sfp1_status_vect[0]; wire sfp1_status_link_synchronization = sfp1_status_vect[1]; wire sfp1_status_rudi_c = sfp1_status_vect[2]; wire sfp1_status_rudi_i = sfp1_status_vect[3]; wire sfp1_status_rudi_invalid = sfp1_status_vect[4]; wire sfp1_status_rxdisperr = sfp1_status_vect[5]; wire sfp1_status_rxnotintable = sfp1_status_vect[6]; wire sfp1_status_phy_link_status = sfp1_status_vect[7]; wire [1:0] sfp1_status_remote_fault_encdg = sfp1_status_vect[9:8]; wire [1:0] sfp1_status_speed = sfp1_status_vect[11:10]; wire sfp1_status_duplex = sfp1_status_vect[12]; wire sfp1_status_remote_fault = sfp1_status_vect[13]; wire [1:0] sfp1_status_pause = sfp1_status_vect[15:14]; wire [4:0] sfp1_config_vect; assign sfp1_config_vect[4] = 1'b0; // autonegotiation enable assign sfp1_config_vect[3] = 1'b0; // isolate assign sfp1_config_vect[2] = 1'b0; // power down assign sfp1_config_vect[1] = 1'b0; // loopback enable assign sfp1_config_vect[0] = 1'b0; // unidirectional enable basex_pcs_pma_1 sfp1_pcspma ( .gtrefclk(sfp0_gmii_gtrefclk), .txn(sfp1_tx_n), .txp(sfp1_tx_p), .rxn(sfp1_rx_n), .rxp(sfp1_rx_p), .independent_clock_bufg(clk_62mhz_int), .txoutclk(), .gtpowergood(), .rxoutclk(), .resetdone(sfp1_gmii_resetdone), .cplllock(), .mmcm_reset(), .userclk(sfp0_gmii_txuserclk), .userclk2(sfp0_gmii_txuserclk2), .pma_reset(sfp0_gmii_pmareset), .mmcm_locked(sfp0_gmii_mmcm_locked), .rxuserclk(sfp0_gmii_txuserclk), .rxuserclk2(sfp0_gmii_txuserclk2), .gmii_txd(sfp1_gmii_txd_int), .gmii_tx_en(sfp1_gmii_tx_en_int), .gmii_tx_er(sfp1_gmii_tx_er_int), .gmii_rxd(sfp1_gmii_rxd_int), .gmii_rx_dv(sfp1_gmii_rx_dv_int), .gmii_rx_er(sfp1_gmii_rx_er_int), .gmii_isolate(), .configuration_vector(sfp1_config_vect), .status_vector(sfp1_status_vect), .reset(rst_125mhz_int), .signal_detect(1'b1) ); assign sfp1_gmii_clk_en_int = 1'b1; // SGMII interface debug: // SW12:1 (sw[3]) off for payload byte, on for status vector // SW12:2 (sw[2]) off for BASE-T port (SGMII), on for SFP // SW12:3 (sw[1]) off for SFP0, on for SFP1 // SW12:4 (sw[0]) off for LSB of status vector, on for MSB wire [15:0] sel_sv = sw[2] ? (sw[1] ? sfp1_status_vect : sfp0_status_vect) : sgmii_status_vect; assign led = sw[3] ? (sw[0] ? sel_sv[15:8] : sel_sv[7:0]) : led_int; fpga_core core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk(clk_125mhz_int), .rst(rst_125mhz_int), /* * GPIO */ .btnu(btnu_int), .btnl(btnl_int), .btnd(btnd_int), .btnr(btnr_int), .btnc(btnc_int), .sw(sw_int), .led(led_int), /* * UART: 115200 bps, 8N1 */ .uart_rxd(uart_rxd_int), .uart_txd(uart_txd), .uart_rts(uart_rts), .uart_cts(uart_cts_int), /* * Ethernet: 1000BASE-T SGMII */ .phy_gmii_clk(phy_gmii_clk_int), .phy_gmii_rst(phy_gmii_rst_int), .phy_gmii_clk_en(phy_gmii_clk_en_int), .phy_gmii_rxd(phy_gmii_rxd_int), .phy_gmii_rx_dv(phy_gmii_rx_dv_int), .phy_gmii_rx_er(phy_gmii_rx_er_int), .phy_gmii_txd(phy_gmii_txd_int), .phy_gmii_tx_en(phy_gmii_tx_en_int), .phy_gmii_tx_er(phy_gmii_tx_er_int), .phy_reset_n(phy_reset_n), .phy_int_n(phy_int_n), /* * Ethernet: 1000BASE-X SFP */ .sfp0_gmii_clk(sfp0_gmii_clk_int), .sfp0_gmii_rst(sfp0_gmii_rst_int), .sfp0_gmii_clk_en(sfp0_gmii_clk_en_int), .sfp0_gmii_rxd(sfp0_gmii_rxd_int), .sfp0_gmii_rx_dv(sfp0_gmii_rx_dv_int), .sfp0_gmii_rx_er(sfp0_gmii_rx_er_int), .sfp0_gmii_txd(sfp0_gmii_txd_int), .sfp0_gmii_tx_en(sfp0_gmii_tx_en_int), .sfp0_gmii_tx_er(sfp0_gmii_tx_er_int), .sfp0_tx_disable_b(sfp0_tx_disable_b), .sfp1_gmii_clk(sfp1_gmii_clk_int), .sfp1_gmii_rst(sfp1_gmii_rst_int), .sfp1_gmii_clk_en(sfp1_gmii_clk_en_int), .sfp1_gmii_rxd(sfp1_gmii_rxd_int), .sfp1_gmii_rx_dv(sfp1_gmii_rx_dv_int), .sfp1_gmii_rx_er(sfp1_gmii_rx_er_int), .sfp1_gmii_txd(sfp1_gmii_txd_int), .sfp1_gmii_tx_en(sfp1_gmii_tx_en_int), .sfp1_gmii_tx_er(sfp1_gmii_tx_er_int), .sfp1_tx_disable_b(sfp1_tx_disable_b) ); endmodule `resetall