// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2021-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * Statistics collector */ module taxi_stats_collect # ( // Channel count parameter CNT = 8, // Increment width (bits) parameter INC_W = 8, // Base statistic ID parameter ID_BASE = 0, // Statistics counter update period (cycles) parameter UPDATE_PERIOD = 1024, // Enable strings parameter logic STR_EN = 1'b0, // Common prefix string (8 characters) parameter logic [8*8-1:0] PREFIX_STR = "BLK" ) ( input wire logic clk, input wire logic rst, /* * Increment inputs */ input wire logic [INC_W-1:0] stat_inc[CNT], input wire logic stat_valid[CNT] = '{CNT{1'b1}}, input wire logic [8*8-1:0] stat_str[CNT] = '{CNT{'0}}, /* * Statistics increment output */ taxi_axis_if.src m_axis_stat, /* * Control inputs */ input wire logic gate = 1'b1, input wire logic update = 1'b0 ); // check configuration if (STR_EN) begin if (!m_axis_stat.USER_EN) $fatal(0, "Error: statistics strings requires tuser (instance %m)"); if (m_axis_stat.DATA_W < 16) $fatal(0, "Error: statistics strings requires tdata width of at least 16 (instance %m)"); end if (ID_BASE+CNT > 2**m_axis_stat.ID_W) $fatal(0, "Error: insufficient tid width (instance %m)"); localparam STAT_INC_W = m_axis_stat.DATA_W; localparam STAT_ID_W = m_axis_stat.ID_W; localparam CNT_W = $clog2(CNT); localparam PERIOD_CNT_W = $clog2(UPDATE_PERIOD+1); localparam ACC_W = INC_W+CNT_W+1; localparam [0:0] STATE_READ = 1'd0, STATE_WRITE = 1'd1; logic [0:0] state_reg = STATE_READ, state_next; logic [STAT_INC_W-1:0] m_axis_stat_tdata_reg = '0, m_axis_stat_tdata_next; logic [STAT_ID_W-1:0] m_axis_stat_tid_reg = '0, m_axis_stat_tid_next; logic m_axis_stat_tvalid_reg = 1'b0, m_axis_stat_tvalid_next; logic m_axis_stat_tuser_reg = 1'b0, m_axis_stat_tuser_next; logic [CNT_W-1:0] count_reg = '0, count_next; logic [PERIOD_CNT_W-1:0] update_period_reg = PERIOD_CNT_W'(UPDATE_PERIOD), update_period_next; logic zero_reg = 1'b1, zero_next; logic update_req_reg = 1'b0, update_req_next; logic update_reg = 1'b0, update_next; logic [CNT-1:0] update_shift_reg = '0, update_shift_next; logic [ACC_W-1:0] ch_reg = '0, ch_next; function automatic [8*6-1:0] pack_str(logic [8*8-1:0] str); // determine length integer j = 0; for (integer i = 0; i < 8; i = i + 1) begin if (str[i*8 +: 8] != 0) begin j = i; end end // convert to 6 bit and pack pack_str = '0; for (integer i = 0; i < 8 && i <= j; i = i + 1) begin pack_str[i*6 +: 6] = {str[8*(j-i) + 6], str[8*(j-i) +: 5]}; end endfunction logic [3:0][11:0] prefix_str_rom = pack_str(PREFIX_STR); logic [CNT*4-1:0][11:0] str_rom; logic [CNT_W-1:0] str_sel_reg = '0, str_sel_next; logic str_prfx_reg = 1'b0, str_prfx_next; logic [1:0] str_ptr_reg = '0, str_ptr_next; logic str_update_reg = 1'b0, str_update_next; for (genvar n = 0; n < CNT; n = n + 1) begin assign str_rom[n*4 +: 4] = pack_str(stat_str[n]); end wire [ACC_W-1:0] acc_int[CNT]; logic [CNT-1:0] acc_clear; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [STAT_INC_W-1:0] mem_reg[CNT]; logic [STAT_INC_W-1:0] mem_rd_data_reg = '0; logic mem_rd_en; logic mem_wr_en; logic [STAT_INC_W-1:0] mem_wr_data; assign m_axis_stat.tdata = m_axis_stat_tdata_reg; assign m_axis_stat.tkeep = 1'b1; assign m_axis_stat.tstrb = m_axis_stat.tkeep; assign m_axis_stat.tvalid = m_axis_stat_tvalid_reg; assign m_axis_stat.tlast = 1'b1; assign m_axis_stat.tid = m_axis_stat_tid_reg; assign m_axis_stat.tdest = '0; assign m_axis_stat.tuser = STR_EN ? m_axis_stat_tuser_reg : '0; for (genvar n = 0; n < CNT; n = n + 1) begin : ch logic [ACC_W-1:0] acc_reg = '0; assign acc_int[n] = acc_reg; always_ff @(posedge clk) begin if (acc_clear[n]) begin if (stat_valid[n] && gate) begin acc_reg <= ACC_W'(stat_inc[n]); end else begin acc_reg <= '0; end end else begin if (stat_valid[n] && gate) begin acc_reg <= acc_reg + ACC_W'(stat_inc[n]); end end if (rst) begin acc_reg <= '0; end end end always_comb begin state_next = STATE_READ; m_axis_stat_tdata_next = m_axis_stat_tdata_reg; m_axis_stat_tid_next = m_axis_stat_tid_reg; m_axis_stat_tvalid_next = m_axis_stat_tvalid_reg && !m_axis_stat.tready; m_axis_stat_tuser_next = m_axis_stat_tuser_reg; count_next = count_reg; update_period_next = update_period_reg; zero_next = zero_reg; update_req_next = update_req_reg; update_next = update_reg; update_shift_next = update_shift_reg; ch_next = ch_reg; str_sel_next = str_sel_reg; str_prfx_next = str_prfx_reg; str_ptr_next = str_ptr_reg; str_update_next = str_update_reg; acc_clear = '0; mem_rd_en = 1'b0; mem_wr_en = 1'b0; mem_wr_data = mem_rd_data_reg + STAT_INC_W'(ch_reg); if (!m_axis_stat_tvalid_reg) begin m_axis_stat_tdata_next = mem_rd_data_reg + STAT_INC_W'(ch_reg); m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE); end case (state_reg) STATE_READ: begin acc_clear[count_reg] = 1'b1; ch_next = acc_int[count_reg]; mem_rd_en = 1'b1; state_next = STATE_WRITE; end STATE_WRITE: begin mem_wr_en = 1'b1; update_shift_next = {update_reg || update_shift_reg[0], update_shift_reg[CNT-1:1]}; if (zero_reg) begin mem_wr_data = STAT_INC_W'(ch_reg); end else if (!m_axis_stat_tvalid_reg && (update_reg || update_shift_reg[0])) begin update_shift_next[CNT-1] = 1'b0; mem_wr_data = '0; m_axis_stat_tdata_next = mem_rd_data_reg + STAT_INC_W'(ch_reg); m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE); m_axis_stat_tvalid_next = mem_rd_data_reg != 0 || ch_reg != 0; m_axis_stat_tuser_next = 1'b0; end else begin mem_wr_data = mem_rd_data_reg + STAT_INC_W'(ch_reg); if (STR_EN && !m_axis_stat_tvalid_reg && str_update_reg && count_reg == str_sel_reg) begin str_update_next = 1'b0; m_axis_stat_tdata_next[15:4] = str_prfx_reg ? str_rom[{str_sel_reg, str_ptr_reg}] : prefix_str_rom[str_ptr_reg]; m_axis_stat_tdata_next[3:0] = {1'b0, str_prfx_reg, str_ptr_reg}; m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE); m_axis_stat_tvalid_next = 1'b1; m_axis_stat_tuser_next = 1'b1; str_ptr_next = str_ptr_reg + 1; if (str_ptr_reg == 2'b11) begin str_prfx_next = !str_prfx_reg; if (str_prfx_reg) begin str_sel_next = str_sel_reg + 1; end end end end if (count_reg == CNT_W'(CNT-1)) begin zero_next = 1'b0; update_req_next = 1'b0; update_next = update_req_reg; if (update_req_reg) begin str_update_next = 1'b1; end count_next = '0; end else begin count_next = count_reg + 1; end state_next = STATE_READ; end endcase if (update_period_reg == 0 || update) begin update_req_next = 1'b1; update_period_next = PERIOD_CNT_W'(UPDATE_PERIOD); end else begin update_period_next = update_period_reg - 1; end end always_ff @(posedge clk) begin state_reg <= state_next; m_axis_stat_tdata_reg <= m_axis_stat_tdata_next; m_axis_stat_tid_reg <= m_axis_stat_tid_next; m_axis_stat_tvalid_reg <= m_axis_stat_tvalid_next; m_axis_stat_tuser_reg <= m_axis_stat_tuser_next; count_reg <= count_next; update_period_reg <= update_period_next; zero_reg <= zero_next; update_req_reg <= update_req_next; update_reg <= update_next; update_shift_reg <= update_shift_next; ch_reg <= ch_next; str_sel_reg <= str_sel_next; str_prfx_reg <= str_prfx_next; str_ptr_reg <= str_ptr_next; str_update_reg <= str_update_next; if (mem_wr_en) begin mem_reg[count_reg] <= mem_wr_data; end else if (mem_rd_en) begin mem_rd_data_reg <= mem_reg[count_reg]; end if (rst) begin state_reg <= STATE_READ; m_axis_stat_tvalid_reg <= 1'b0; count_reg <= '0; update_period_reg <= PERIOD_CNT_W'(UPDATE_PERIOD); zero_reg <= 1'b1; update_req_reg <= 1'b0; update_reg <= 1'b0; str_sel_reg <= '0; str_prfx_reg <= 1'b0; str_ptr_reg <= '0; str_update_reg <= 1'b0; end end endmodule `resetall