// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 interconnect */ module taxi_axi_interconnect_wr # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Address width in bits for address decoding parameter ADDR_W = 32, // Number of regions per master interface parameter M_REGIONS = 1, // TODO fix parametrization once verilator issue 5890 is fixed // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits // set to zero for default addressing based on M_ADDR_W parameter M_BASE_ADDR = 0, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}}, // Write connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}} ) ( input wire logic clk, input wire logic rst, /* * AXI4 slave interfaces */ taxi_axi_if.wr_slv s_axi_wr[S_COUNT], /* * AXI4 master interfaces */ taxi_axi_if.wr_mst m_axi_wr[M_COUNT] ); // extract parameters localparam DATA_W = s_axi_wr[0].DATA_W; localparam S_ADDR_W = s_axi_wr[0].ADDR_W; localparam STRB_W = s_axi_wr[0].STRB_W; localparam S_ID_W = s_axi_wr[0].ID_W; localparam M_ID_W = m_axi_wr[0].ID_W; localparam logic AWUSER_EN = s_axi_wr[0].AWUSER_EN && m_axi_wr[0].AWUSER_EN; localparam AWUSER_W = s_axi_wr[0].AWUSER_W; localparam logic WUSER_EN = s_axi_wr[0].WUSER_EN && m_axi_wr[0].WUSER_EN; localparam WUSER_W = s_axi_wr[0].WUSER_W; localparam logic BUSER_EN = s_axi_wr[0].BUSER_EN && m_axi_wr[0].BUSER_EN; localparam BUSER_W = s_axi_wr[0].BUSER_W; localparam AXI_M_ADDR_W = m_axi_wr[0].ADDR_W; localparam CL_S_COUNT = $clog2(S_COUNT); localparam CL_M_COUNT = $clog2(M_COUNT); localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1; localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1; localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W; localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT; localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE; // default address computation function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy); logic [ADDR_W-1:0] base; integer width; logic [ADDR_W-1:0] size; logic [ADDR_W-1:0] mask; begin calcBaseAddrs = '0; base = '0; for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin width = M_ADDR_W_INT[i]; mask = {ADDR_W{1'b1}} >> (ADDR_W - width); size = mask + 1; if (width > 0) begin if ((base & mask) != 0) begin base = base + size - (base & mask); // align end calcBaseAddrs[i] = base; base = base + size; // increment end end end endfunction localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0); // check configuration if (s_axi_wr[0].ADDR_W != ADDR_W) $fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)"); if (m_axi_wr[0].DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (m_axi_wr[0].STRB_W != STRB_W) $fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)"); initial begin if (M_REGIONS < 1 || M_REGIONS > 16) begin $error("Error: M_REGIONS must be between 1 and 16 (instance %m)"); $finish; end for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin /* verilator lint_off UNSIGNED */ if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin $error("Error: address width out of range (instance %m)"); $finish; end /* verilator lint_on UNSIGNED */ end $display("Addressing configuration for axi_interconnect instance %m"); for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_W_INT[i] != 0) begin $display("%2d (%2d): %x / %02d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); end end for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin $display("Region not aligned:"); $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); $error("Error: address range not aligned (instance %m)"); $finish; end end for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j])))) && ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin $display("Overlapping regions:"); $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i], M_ADDR_W_INT[i], M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]), M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i])) ); $display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j], M_ADDR_W_INT[j], M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]), M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j])) ); $error("Error: address ranges overlap (instance %m)"); $finish; end end end end end localparam logic [2:0] STATE_IDLE = 3'd0, STATE_DECODE = 3'd1, STATE_WRITE = 3'd2, STATE_WRITE_RESP = 3'd3, STATE_WRITE_DROP = 3'd4, STATE_WAIT_IDLE = 3'd5; logic [2:0] state_reg = STATE_IDLE, state_next; logic match; logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next; logic [S_ID_W-1:0] axi_id_reg = '0, axi_id_next; logic [ADDR_W-1:0] axi_addr_reg = '0, axi_addr_next; logic axi_addr_valid_reg = 1'b0, axi_addr_valid_next; logic [7:0] axi_len_reg = 8'd0, axi_len_next; logic [2:0] axi_size_reg = 3'd0, axi_size_next; logic [1:0] axi_burst_reg = 2'd0, axi_burst_next; logic axi_lock_reg = 1'b0, axi_lock_next; logic [3:0] axi_cache_reg = 4'd0, axi_cache_next; logic [2:0] axi_prot_reg = 3'b000, axi_prot_next; logic [3:0] axi_qos_reg = 4'd0, axi_qos_next; logic [3:0] axi_region_reg = 4'd0, axi_region_next; logic [AWUSER_W-1:0] axi_awuser_reg = '0, axi_awuser_next; logic [1:0] axi_bresp_reg = 2'b00, axi_bresp_next; logic [BUSER_W-1:0] axi_buser_reg = '0, axi_buser_next; logic [S_COUNT-1:0] s_axi_awready_reg = '0, s_axi_awready_next; logic [S_COUNT-1:0] s_axi_wready_reg = '0, s_axi_wready_next; logic [S_COUNT-1:0] s_axi_bvalid_reg = '0, s_axi_bvalid_next; logic [M_COUNT-1:0] m_axi_awvalid_reg = '0, m_axi_awvalid_next; logic [M_COUNT-1:0] m_axi_bready_reg = '0, m_axi_bready_next; // internal datapath logic [DATA_W-1:0] m_axi_wdata_int; logic [STRB_W-1:0] m_axi_wstrb_int; logic m_axi_wlast_int; logic [WUSER_W-1:0] m_axi_wuser_int; logic [M_COUNT-1:0] m_axi_wvalid_int; logic m_axi_wready_int_reg = 1'b0; wire m_axi_wready_int_early; // unpack interface array wire [S_ID_W-1:0] s_axi_awid[S_COUNT]; wire [ADDR_W-1:0] s_axi_addr[S_COUNT]; wire [7:0] s_axi_awlen[S_COUNT]; wire [2:0] s_axi_awsize[S_COUNT]; wire [1:0] s_axi_awburst[S_COUNT]; wire s_axi_awlock[S_COUNT]; wire [3:0] s_axi_awcache[S_COUNT]; wire [2:0] s_axi_awprot[S_COUNT]; wire [3:0] s_axi_awqos[S_COUNT]; wire [AWUSER_W-1:0] s_axi_awuser[S_COUNT]; wire [S_COUNT-1:0] s_axi_awvalid; wire [DATA_W-1:0] s_axi_wdata[S_COUNT]; wire [STRB_W-1:0] s_axi_wstrb[S_COUNT]; wire s_axi_wlast[S_COUNT]; wire [WUSER_W-1:0] s_axi_wuser[S_COUNT]; wire [S_COUNT-1:0] s_axi_wvalid; wire [S_COUNT-1:0] s_axi_bready; wire [M_COUNT-1:0] m_axi_awready; wire [M_ID_W-1:0] m_axi_bid[M_COUNT]; wire [1:0] m_axi_bresp[M_COUNT]; wire [BUSER_W-1:0] m_axi_buser[M_COUNT]; wire [M_COUNT-1:0] m_axi_bvalid; for (genvar n = 0; n < S_COUNT; n = n + 1) begin assign s_axi_awid[n] = s_axi_wr[n].awid; assign s_axi_addr[n] = s_axi_wr[n].awaddr; assign s_axi_awlen[n] = s_axi_wr[n].awlen; assign s_axi_awsize[n] = s_axi_wr[n].awsize; assign s_axi_awburst[n] = s_axi_wr[n].awburst; assign s_axi_awlock[n] = s_axi_wr[n].awlock; assign s_axi_awcache[n] = s_axi_wr[n].awcache; assign s_axi_awprot[n] = s_axi_wr[n].awprot; assign s_axi_awqos[n] = s_axi_wr[n].awqos; assign s_axi_awuser[n] = s_axi_wr[n].awuser; assign s_axi_awvalid[n] = s_axi_wr[n].awvalid; assign s_axi_wr[n].awready = s_axi_awready_reg[n]; assign s_axi_wdata[n] = s_axi_wr[n].wdata; assign s_axi_wstrb[n] = s_axi_wr[n].wstrb; assign s_axi_wlast[n] = s_axi_wr[n].wlast; assign s_axi_wuser[n] = s_axi_wr[n].wuser; assign s_axi_wvalid[n] = s_axi_wr[n].wvalid; assign s_axi_wr[n].wready = s_axi_wready_reg[n]; assign s_axi_wr[n].bid = axi_id_reg; assign s_axi_wr[n].bresp = axi_bresp_reg; assign s_axi_wr[n].buser = BUSER_EN ? axi_buser_reg : '0; assign s_axi_wr[n].bvalid = s_axi_bvalid_reg[n]; assign s_axi_bready[n] = s_axi_wr[n].bready; end for (genvar n = 0; n < M_COUNT; n = n + 1) begin assign m_axi_wr[n].awid = axi_id_reg; assign m_axi_wr[n].awaddr = AXI_M_ADDR_W'(axi_addr_reg); assign m_axi_wr[n].awlen = axi_len_reg; assign m_axi_wr[n].awsize = axi_size_reg; assign m_axi_wr[n].awburst = axi_burst_reg; assign m_axi_wr[n].awlock = axi_lock_reg; assign m_axi_wr[n].awcache = axi_cache_reg; assign m_axi_wr[n].awprot = axi_prot_reg; assign m_axi_wr[n].awqos = axi_qos_reg; assign m_axi_wr[n].awuser = AWUSER_EN ? axi_awuser_reg : '0; assign m_axi_wr[n].awvalid = m_axi_awvalid_reg[n]; assign m_axi_awready[n] = m_axi_wr[n].awready; assign m_axi_bid[n] = m_axi_wr[n].bid; assign m_axi_bresp[n] = m_axi_wr[n].bresp; assign m_axi_buser[n] = m_axi_wr[n].buser; assign m_axi_bvalid[n] = m_axi_wr[n].bvalid; assign m_axi_wr[n].bready = m_axi_bready_reg[n]; end // slave side mux wire [CL_S_COUNT_INT-1:0] s_select; wire [S_ID_W-1:0] current_s_axi_awid = s_axi_awid[s_select]; wire [ADDR_W-1:0] current_s_axi_addr = s_axi_addr[s_select]; wire [7:0] current_s_axi_awlen = s_axi_awlen[s_select]; wire [2:0] current_s_axi_awsize = s_axi_awsize[s_select]; wire [1:0] current_s_axi_awburst = s_axi_awburst[s_select]; wire current_s_axi_awlock = s_axi_awlock[s_select]; wire [3:0] current_s_axi_awcache = s_axi_awcache[s_select]; wire [2:0] current_s_axi_awprot = s_axi_awprot[s_select]; wire [3:0] current_s_axi_awqos = s_axi_awqos[s_select]; wire [AWUSER_W-1:0] current_s_axi_awuser = s_axi_awuser[s_select]; wire current_s_axi_awvalid = s_axi_awvalid[s_select]; wire [DATA_W-1:0] current_s_axi_wdata = s_axi_wdata[s_select]; wire [STRB_W-1:0] current_s_axi_wstrb = s_axi_wstrb[s_select]; wire current_s_axi_wlast = s_axi_wlast[s_select]; wire [WUSER_W-1:0] current_s_axi_wuser = s_axi_wuser[s_select]; wire current_s_axi_wvalid = s_axi_wvalid[s_select]; wire current_s_axi_bready = s_axi_bready[s_select]; // master side mux wire current_m_axi_awready = m_axi_awready[m_select_reg]; wire current_m_axi_wready = m_axi_wready[m_select_reg]; wire [M_ID_W-1:0] current_m_axi_bid = m_axi_bid[m_select_reg]; wire [1:0] current_m_axi_bresp = m_axi_bresp[m_select_reg]; wire [BUSER_W-1:0] current_m_axi_buser = m_axi_buser[m_select_reg]; wire current_m_axi_bvalid = m_axi_bvalid[m_select_reg]; // arbiter instance wire [S_COUNT-1:0] req; wire [S_COUNT-1:0] ack; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT_INT-1:0] grant_index; assign s_select = grant_index; if (S_COUNT > 1) begin : arb taxi_arbiter #( .PORTS(S_COUNT), .ARB_ROUND_ROBIN(1), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .LSB_HIGH_PRIO(1) ) arb_inst ( .clk(clk), .rst(rst), .req(req), .ack(ack), .grant(grant), .grant_valid(grant_valid), .grant_index(grant_index) ); end else begin logic grant_valid_reg = 1'b0; always @(posedge clk) begin if (req) begin grant_valid_reg <= 1'b1; end if (ack || rst) begin grant_valid_reg <= 1'b0; end end assign grant_valid = grant_valid_reg; assign grant = '1; assign grant_index = '0; end assign req = s_axi_awvalid; assign ack = state_reg == STATE_WAIT_IDLE ? '1 : '0; always_comb begin state_next = STATE_IDLE; match = 1'b0; m_select_next = m_select_reg; axi_id_next = axi_id_reg; axi_addr_next = axi_addr_reg; axi_addr_valid_next = axi_addr_valid_reg; axi_len_next = axi_len_reg; axi_size_next = axi_size_reg; axi_burst_next = axi_burst_reg; axi_lock_next = axi_lock_reg; axi_cache_next = axi_cache_reg; axi_prot_next = axi_prot_reg; axi_qos_next = axi_qos_reg; axi_region_next = axi_region_reg; axi_awuser_next = axi_awuser_reg; axi_bresp_next = axi_bresp_reg; axi_buser_next = axi_buser_reg; s_axi_awready_next = '0; s_axi_wready_next = '0; s_axi_bvalid_next = s_axi_bvalid_reg & ~s_axi_bready; m_axi_awvalid_next = m_axi_awvalid_reg & ~m_axi_awready; m_axi_bready_next = '0; m_axi_wdata_int = current_s_axi_wdata; m_axi_wstrb_int = current_s_axi_wstrb; m_axi_wlast_int = current_s_axi_wlast; m_axi_wuser_int = current_s_axi_wuser; m_axi_wvalid_int = '0; case (state_reg) STATE_IDLE: begin // idle state; wait for arbitration axi_addr_valid_next = 1'b1; axi_id_next = current_s_axi_awid; axi_addr_next = current_s_axi_addr; axi_len_next = current_s_axi_awlen; axi_size_next = current_s_axi_awsize; axi_burst_next = current_s_axi_awburst; axi_lock_next = current_s_axi_awlock; axi_cache_next = current_s_axi_awcache; axi_prot_next = current_s_axi_awprot; axi_qos_next = current_s_axi_awqos; axi_awuser_next = current_s_axi_awuser; if (grant_valid) begin s_axi_awready_next[s_select] = 1'b1; state_next = STATE_DECODE; end else begin state_next = STATE_IDLE; end end STATE_DECODE: begin // decode state; determine master interface match = 1'b0; for (integer i = 0; i < M_COUNT; i = i + 1) begin for (integer j = 0; j < M_REGIONS; j = j + 1) begin if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axi_prot_reg[1]) && M_CONNECT_INT[i][s_select] && (axi_addr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin m_select_next = CL_M_COUNT_INT'(i); match = 1'b1; end end end axi_bresp_next = 2'b11; if (match) begin s_axi_wready_next[s_select] = m_axi_wready_int_early; state_next = STATE_WRITE; end else begin // no match; return decode error s_axi_wready_next[s_select] = 1'b1; state_next = STATE_WRITE_DROP; end end STATE_WRITE: begin // write state; store and forward write data s_axi_wready_next[s_select] = m_axi_wready_int_early; if (axi_addr_valid_reg) begin m_axi_awvalid_next[m_select_reg] = 1'b1; end axi_addr_valid_next = 1'b0; m_axi_wdata_int = current_s_axi_wdata; m_axi_wstrb_int = current_s_axi_wstrb; m_axi_wlast_int = current_s_axi_wlast; m_axi_wuser_int = current_s_axi_wuser; if (s_axi_wready_reg != 0 && current_s_axi_wvalid) begin m_axi_wvalid_int[m_select_reg] = 1'b1; if (current_s_axi_wlast) begin s_axi_wready_next[s_select] = 1'b0; m_axi_bready_next[m_select_reg] = s_axi_bvalid_reg == 0; state_next = STATE_WRITE_RESP; end else begin state_next = STATE_WRITE; end end else begin state_next = STATE_WRITE; end end STATE_WRITE_RESP: begin // write response state; store and forward write response m_axi_bready_next[m_select_reg] = s_axi_bvalid_reg == 0; if (m_axi_bready_reg != 0 && current_m_axi_bvalid) begin m_axi_bready_next[m_select_reg] = 1'b0; axi_bresp_next = current_m_axi_bresp; s_axi_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_RESP; end end STATE_WRITE_DROP: begin // write drop state; drop write data s_axi_wready_next[s_select] = 1'b1; axi_addr_valid_next = 1'b0; if (s_axi_wready_reg != 0 && current_s_axi_wvalid && current_s_axi_wlast) begin s_axi_wready_next[s_select] = 1'b0; s_axi_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_DROP; end end STATE_WAIT_IDLE: begin // wait for idle state; wait untl grant valid is deasserted if (grant_valid == 0 || ack != 0) begin state_next = STATE_IDLE; end else begin state_next = STATE_WAIT_IDLE; end end default: begin // invalid state state_next = STATE_IDLE; end endcase end always_ff @(posedge clk) begin state_reg <= state_next; s_axi_awready_reg <= s_axi_awready_next; s_axi_wready_reg <= s_axi_wready_next; s_axi_bvalid_reg <= s_axi_bvalid_next; m_axi_awvalid_reg <= m_axi_awvalid_next; m_axi_bready_reg <= m_axi_bready_next; m_select_reg <= m_select_next; axi_id_reg <= axi_id_next; axi_addr_reg <= axi_addr_next; axi_addr_valid_reg <= axi_addr_valid_next; axi_len_reg <= axi_len_next; axi_size_reg <= axi_size_next; axi_burst_reg <= axi_burst_next; axi_lock_reg <= axi_lock_next; axi_cache_reg <= axi_cache_next; axi_prot_reg <= axi_prot_next; axi_qos_reg <= axi_qos_next; axi_region_reg <= axi_region_next; axi_awuser_reg <= axi_awuser_next; axi_bresp_reg <= axi_bresp_next; axi_buser_reg <= axi_buser_next; if (rst) begin state_reg <= STATE_IDLE; s_axi_awready_reg <= '0; s_axi_wready_reg <= '0; s_axi_bvalid_reg <= '0; m_axi_awvalid_reg <= '0; m_axi_bready_reg <= '0; end end // output datapath logic (W channel) logic [DATA_W-1:0] m_axi_wdata_reg = '0; logic [STRB_W-1:0] m_axi_wstrb_reg = '0; logic m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0; logic [M_COUNT-1:0] m_axi_wvalid_reg = '0, m_axi_wvalid_next; logic [DATA_W-1:0] temp_m_axi_wdata_reg = '0; logic [STRB_W-1:0] temp_m_axi_wstrb_reg = '0; logic temp_m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0; logic [M_COUNT-1:0] temp_m_axi_wvalid_reg = '0, temp_m_axi_wvalid_next; // datapath control logic store_axi_w_int_to_output; logic store_axi_w_int_to_temp; logic store_axi_w_temp_to_output; wire [M_COUNT-1:0] m_axi_wready; for (genvar n = 0; n < M_COUNT; n = n + 1) begin assign m_axi_wr[n].wdata = m_axi_wdata_reg; assign m_axi_wr[n].wstrb = m_axi_wstrb_reg; assign m_axi_wr[n].wlast = m_axi_wlast_reg; assign m_axi_wr[n].wuser = WUSER_EN ? m_axi_wuser_reg : '0; assign m_axi_wr[n].wvalid = m_axi_wvalid_reg[n]; assign m_axi_wready[n] = m_axi_wr[n].wready; end // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axi_wready_int_early = (m_axi_wready & m_axi_wvalid_reg) != 0 || (temp_m_axi_wvalid_reg == 0 && (m_axi_wvalid_reg == 0 || m_axi_wvalid_int == 0)); always_comb begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg; store_axi_w_int_to_output = 1'b0; store_axi_w_int_to_temp = 1'b0; store_axi_w_temp_to_output = 1'b0; if (m_axi_wready_int_reg) begin // input is ready if ((m_axi_wready & m_axi_wvalid_reg) != 0 || m_axi_wvalid_reg == 0) begin // output is ready or currently not valid, transfer data to output m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_wvalid_next = m_axi_wvalid_int; store_axi_w_int_to_temp = 1'b1; end end else if ((m_axi_wready & m_axi_wvalid_reg) != 0) begin // input is not ready, but output is ready m_axi_wvalid_next = temp_m_axi_wvalid_reg; temp_m_axi_wvalid_next = '0; store_axi_w_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin m_axi_wvalid_reg <= m_axi_wvalid_next; m_axi_wready_int_reg <= m_axi_wready_int_early; temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next; // datapath if (store_axi_w_int_to_output) begin m_axi_wdata_reg <= m_axi_wdata_int; m_axi_wstrb_reg <= m_axi_wstrb_int; m_axi_wlast_reg <= m_axi_wlast_int; m_axi_wuser_reg <= m_axi_wuser_int; end else if (store_axi_w_temp_to_output) begin m_axi_wdata_reg <= temp_m_axi_wdata_reg; m_axi_wstrb_reg <= temp_m_axi_wstrb_reg; m_axi_wlast_reg <= temp_m_axi_wlast_reg; m_axi_wuser_reg <= temp_m_axi_wuser_reg; end if (store_axi_w_int_to_temp) begin temp_m_axi_wdata_reg <= m_axi_wdata_int; temp_m_axi_wstrb_reg <= m_axi_wstrb_int; temp_m_axi_wlast_reg <= m_axi_wlast_int; temp_m_axi_wuser_reg <= m_axi_wuser_int; end if (rst) begin m_axi_wvalid_reg <= '0; m_axi_wready_int_reg <= 1'b0; temp_m_axi_wvalid_reg <= '0; end end endmodule `resetall