// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2021-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 lite crossbar (read) */ module taxi_axil_crossbar_rd # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Address width in bits for address decoding parameter ADDR_W = 32, // TODO fix parametrization once verilator issue 5890 is fixed // Number of concurrent operations for each slave interface // S_COUNT concatenated fields of 32 bits parameter S_ACCEPT = {S_COUNT{32'd16}}, // Number of regions per master interface parameter M_REGIONS = 1, // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits // set to zero for default addressing based on M_ADDR_W parameter M_BASE_ADDR = '0, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}}, // Read connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}}, // Number of concurrent operations for each master interface // M_COUNT concatenated fields of 32 bits parameter M_ISSUE = {M_COUNT{32'd16}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}}, // Slave interface AR channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_AR_REG_TYPE = {S_COUNT{2'd0}}, // Slave interface R channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter S_R_REG_TYPE = {S_COUNT{2'd2}}, // Master interface AR channel register type (output) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_AR_REG_TYPE = {M_COUNT{2'd1}}, // Master interface R channel register type (input) // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter M_R_REG_TYPE = {M_COUNT{2'd0}} ) ( input wire logic clk, input wire logic rst, /* * AXI4-lite slave interfaces */ taxi_axil_if.rd_slv s_axil_rd[S_COUNT], /* * AXI4-lite master interfaces */ taxi_axil_if.rd_mst m_axil_rd[M_COUNT] ); // extract parameters localparam DATA_W = s_axil_rd[0].DATA_W; localparam S_ADDR_W = s_axil_rd[0].ADDR_W; localparam STRB_W = s_axil_rd[0].STRB_W; localparam logic ARUSER_EN = s_axil_rd[0].ARUSER_EN && m_axil_rd[0].ARUSER_EN; localparam ARUSER_W = s_axil_rd[0].ARUSER_W; localparam logic RUSER_EN = s_axil_rd[0].RUSER_EN && m_axil_rd[0].RUSER_EN; localparam RUSER_W = s_axil_rd[0].RUSER_W; localparam AXIL_M_ADDR_W = m_axil_rd[0].ADDR_W; localparam CL_S_COUNT = $clog2(S_COUNT); localparam CL_M_COUNT = $clog2(M_COUNT); localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1; localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1; localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT; localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE; // check configuration if (s_axil_rd[0].ADDR_W != ADDR_W) $fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)"); if (m_axil_rd[0].DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (m_axil_rd[0].STRB_W != STRB_W) $fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)"); wire [ADDR_W-1:0] int_s_axil_araddr[S_COUNT]; wire [2:0] int_s_axil_arprot[S_COUNT]; wire [ARUSER_W-1:0] int_s_axil_aruser[S_COUNT]; logic [M_COUNT-1:0] int_axil_arvalid[S_COUNT]; logic [S_COUNT-1:0] int_axil_arready[M_COUNT]; wire [DATA_W-1:0] int_m_axil_rdata[M_COUNT]; wire [1:0] int_m_axil_rresp[M_COUNT]; wire [RUSER_W-1:0] int_m_axil_ruser[M_COUNT]; logic [S_COUNT-1:0] int_axil_rvalid[M_COUNT]; logic [M_COUNT-1:0] int_axil_rready[S_COUNT]; for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces taxi_axil_if #( .DATA_W(s_axil_rd[0].DATA_W), .ADDR_W(s_axil_rd[0].ADDR_W), .STRB_W(s_axil_rd[0].STRB_W), .ARUSER_EN(s_axil_rd[0].ARUSER_EN), .ARUSER_W(s_axil_rd[0].ARUSER_W), .RUSER_EN(s_axil_rd[0].RUSER_EN), .RUSER_W(s_axil_rd[0].RUSER_W) ) int_axil(); // S side register taxi_axil_register_rd #( .AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]), .R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2]) ) reg_inst ( .clk(clk), .rst(rst), /* * AXI4-Lite slave interface */ .s_axil_rd(s_axil_rd[m]), /* * AXI4-Lite master interface */ .m_axil_rd(int_axil) ); // response routing FIFO localparam FIFO_AW = $clog2(S_ACCEPT_INT[m])+1; logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = 0; logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = 0; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [CL_M_COUNT_INT-1:0] fifo_select[2**FIFO_AW]; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic fifo_decerr[2**FIFO_AW]; wire [CL_M_COUNT_INT-1:0] fifo_wr_select; wire fifo_wr_decerr; wire fifo_wr_en; logic [CL_M_COUNT_INT-1:0] fifo_rd_select_reg = 0; logic fifo_rd_decerr_reg = 0; logic fifo_rd_valid_reg = 0; wire fifo_rd_en; logic fifo_half_full_reg = 1'b0; wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg; integer i; initial begin for (i = 0; i < 2**FIFO_AW; i = i + 1) begin fifo_select[i] = 0; fifo_decerr[i] = 0; end end always_ff @(posedge clk) begin if (fifo_wr_en) begin fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select; fifo_decerr[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_decerr; fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1; end fifo_rd_valid_reg <= fifo_rd_valid_reg && !fifo_rd_en; if ((fifo_rd_ptr_reg != fifo_wr_ptr_reg) && (!fifo_rd_valid_reg || fifo_rd_en)) begin fifo_rd_select_reg <= fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]]; fifo_rd_decerr_reg <= fifo_decerr[fifo_rd_ptr_reg[FIFO_AW-1:0]]; fifo_rd_valid_reg <= 1'b1; fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1; end fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1); if (rst) begin fifo_wr_ptr_reg <= 0; fifo_rd_ptr_reg <= 0; fifo_rd_valid_reg <= 1'b0; end end // address decode and admission control wire [CL_M_COUNT_INT-1:0] a_select; wire m_axil_avalid; wire m_axil_aready; wire [CL_M_COUNT_INT-1:0] m_rc_select; wire m_rc_decerr; wire m_rc_valid; wire m_rc_ready; taxi_axil_crossbar_addr #( .S(m), .S_COUNT(S_COUNT), .M_COUNT(M_COUNT), .SEL_W(CL_M_COUNT_INT), .ADDR_W(ADDR_W), .STRB_W(STRB_W), .M_REGIONS(M_REGIONS), .M_BASE_ADDR(M_BASE_ADDR), .M_ADDR_W(M_ADDR_W), .M_CONNECT(M_CONNECT), .M_SECURE(M_SECURE), .WC_OUTPUT(0) ) addr_inst ( .clk(clk), .rst(rst), /* * Address input */ .s_axil_aaddr(int_axil.araddr), .s_axil_aprot(int_axil.arprot), .s_axil_avalid(int_axil.arvalid), .s_axil_aready(int_axil.arready), /* * Address output */ .m_select(a_select), .m_axil_avalid(m_axil_avalid), .m_axil_aready(m_axil_aready), /* * Write command output */ .m_wc_select(), .m_wc_decerr(), .m_wc_valid(), .m_wc_ready(1'b1), /* * Response command output */ .m_rc_select(m_rc_select), .m_rc_decerr(m_rc_decerr), .m_rc_valid(m_rc_valid), .m_rc_ready(m_rc_ready) ); assign int_s_axil_araddr[m] = int_axil.araddr; assign int_s_axil_arprot[m] = int_axil.arprot; assign int_s_axil_aruser[m] = int_axil.aruser; always_comb begin int_axil_arvalid[m] = '0; int_axil_arvalid[m][a_select] = m_axil_avalid; end assign m_axil_aready = int_axil_arready[a_select][m]; // response handling assign fifo_wr_select = m_rc_select; assign fifo_wr_decerr = m_rc_decerr; assign fifo_wr_en = m_rc_valid && !fifo_half_full_reg; assign m_rc_ready = !fifo_half_full_reg; // write response handling wire [CL_M_COUNT_INT-1:0] r_select = M_COUNT > 1 ? fifo_rd_select_reg : '0; wire r_decerr = fifo_rd_decerr_reg; wire r_valid = fifo_rd_valid_reg; // read response mux assign int_axil.rdata = r_decerr ? '0 : int_m_axil_rdata[r_select]; assign int_axil.rresp = r_decerr ? 2'b11 : int_m_axil_rresp[r_select]; assign int_axil.ruser = r_decerr ? '0 : int_m_axil_ruser[r_select]; assign int_axil.rvalid = (r_decerr ? 1'b1 : int_axil_rvalid[r_select][m]) && r_valid; always_comb begin int_axil_rready[m] = '0; int_axil_rready[m][r_select] = r_valid && int_axil.rready; end assign fifo_rd_en = int_axil.rvalid && int_axil.rready && r_valid; end // s_ifaces for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces taxi_axil_if #( .DATA_W(m_axil_rd[0].DATA_W), .ADDR_W(m_axil_rd[0].ADDR_W), .STRB_W(m_axil_rd[0].STRB_W), .ARUSER_EN(m_axil_rd[0].ARUSER_EN), .ARUSER_W(m_axil_rd[0].ARUSER_W), .RUSER_EN(m_axil_rd[0].RUSER_EN), .RUSER_W(m_axil_rd[0].RUSER_W) ) int_axil(); // response routing FIFO localparam FIFO_AW = $clog2(M_ISSUE_INT[n])+1; logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = '0; logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = '0; (* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *) logic [CL_S_COUNT_INT-1:0] fifo_select[2**FIFO_AW]; wire [CL_S_COUNT_INT-1:0] fifo_wr_select; wire fifo_wr_en; wire fifo_rd_en; logic fifo_half_full_reg = 1'b0; wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg; initial begin for (integer i = 0; i < 2**FIFO_AW; i = i + 1) begin fifo_select[i] = '0; end end always_ff @(posedge clk) begin if (fifo_wr_en) begin fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select; fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1; end if (fifo_rd_en) begin fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1; end fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1); if (rst) begin fifo_wr_ptr_reg <= '0; fifo_rd_ptr_reg <= '0; end end // address arbitration wire [S_COUNT-1:0] a_req; wire [S_COUNT-1:0] a_ack; wire [S_COUNT-1:0] a_grant; wire a_grant_valid; wire [CL_S_COUNT_INT-1:0] a_grant_index; if (S_COUNT > 1) begin : arb taxi_arbiter #( .PORTS(S_COUNT), .ARB_ROUND_ROBIN(1), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .LSB_HIGH_PRIO(1) ) a_arb_inst ( .clk(clk), .rst(rst), .req(a_req), .ack(a_ack), .grant(a_grant), .grant_valid(a_grant_valid), .grant_index(a_grant_index) ); end else begin logic grant_valid_reg = 1'b0; always @(posedge clk) begin if (a_req) begin grant_valid_reg <= 1'b1; end if (a_ack || rst) begin grant_valid_reg <= 1'b0; end end assign a_grant_valid = grant_valid_reg; assign a_grant = grant_valid_reg; assign a_grant_index = '0; end // address mux assign int_axil.araddr = AXIL_M_ADDR_W'(int_s_axil_araddr[a_grant_index]); assign int_axil.arprot = int_s_axil_arprot[a_grant_index]; assign int_axil.aruser = int_s_axil_aruser[a_grant_index]; assign int_axil.arvalid = int_axil_arvalid[a_grant_index][n] && a_grant_valid; always_comb begin int_axil_arready[n] = '0; int_axil_arready[n][a_grant_index] = a_grant_valid && int_axil.arready; end for (genvar m = 0; m < S_COUNT; m = m + 1) begin assign a_req[m] = int_axil_arvalid[m][n] && !a_grant_valid && !fifo_half_full_reg; assign a_ack[m] = a_grant[m] && int_axil_arvalid[m][n] && int_axil.arready; end assign fifo_wr_select = a_grant_index; assign fifo_wr_en = int_axil.arvalid && int_axil.arready && a_grant_valid; // read response forwarding wire [CL_S_COUNT_INT-1:0] r_select = S_COUNT > 1 ? fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]] : '0; assign int_m_axil_rdata[n] = int_axil.rdata; assign int_m_axil_rresp[n] = int_axil.rresp; assign int_m_axil_ruser[n] = int_axil.ruser; always_comb begin int_axil_rvalid[n] = '0; int_axil_rvalid[n][r_select] = int_axil.rvalid; end assign int_axil.rready = int_axil_rready[r_select][n]; assign fifo_rd_en = int_axil.rvalid && int_axil.rready; // M side register taxi_axil_register_rd #( .AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]), .R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2]) ) reg_inst ( .clk(clk), .rst(rst), /* * AXI4-Lite slave interface */ .s_axil_rd(int_axil), /* * AXI4-Lite master interface */ .m_axil_rd(m_axil_rd[n]) ); end // m_ifaces endmodule `resetall