// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 lite width adapter (write) */ module taxi_axil_adapter_wr ( input wire logic clk, input wire logic rst, /* * AXI4-Lite slave interface */ taxi_axil_if.wr_slv s_axil_wr, /* * AXI4-Lite master interface */ taxi_axil_if.wr_mst m_axil_wr ); // extract parameters localparam S_DATA_W = s_axil_wr.DATA_W; localparam ADDR_W = s_axil_wr.ADDR_W; localparam S_STRB_W = s_axil_wr.STRB_W; localparam logic AWUSER_EN = s_axil_wr.AWUSER_EN && m_axil_wr.AWUSER_EN; localparam AWUSER_W = s_axil_wr.AWUSER_W; localparam logic WUSER_EN = s_axil_wr.WUSER_EN && m_axil_wr.WUSER_EN; localparam WUSER_W = s_axil_wr.WUSER_W; localparam logic BUSER_EN = s_axil_wr.BUSER_EN && m_axil_wr.BUSER_EN; localparam BUSER_W = s_axil_wr.BUSER_W; localparam M_DATA_W = m_axil_wr.DATA_W; localparam M_STRB_W = m_axil_wr.STRB_W; localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W); localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W); localparam S_BYTE_LANES = S_STRB_W; localparam M_BYTE_LANES = M_STRB_W; localparam S_BYTE_W = S_DATA_W/S_BYTE_LANES; localparam M_BYTE_W = M_DATA_W/M_BYTE_LANES; localparam S_ADDR_MASK = {ADDR_W{1'b1}} << S_ADDR_BIT_OFFSET; localparam M_ADDR_MASK = {ADDR_W{1'b1}} << M_ADDR_BIT_OFFSET; // check configuration if (S_BYTE_W * S_STRB_W != S_DATA_W) $fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)"); if (M_BYTE_W * M_STRB_W != M_DATA_W) $fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)"); if (S_BYTE_W != M_BYTE_W) $fatal(0, "Error: byte size mismatch (instance %m)"); if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES) $fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)"); if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES) $fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)"); if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass // same width; bypass assign m_axil_wr.awaddr = s_axil_wr.awaddr; assign m_axil_wr.awprot = s_axil_wr.awprot; assign m_axil_wr.awuser = AWUSER_EN ? s_axil_wr.awuser : '0; assign m_axil_wr.awvalid = s_axil_wr.awvalid; assign s_axil_wr.awready = m_axil_wr.awready; assign m_axil_wr.wdata = s_axil_wr.wdata; assign m_axil_wr.wstrb = s_axil_wr.wstrb; assign m_axil_wr.wuser = WUSER_EN ? s_axil_wr.wuser : '0; assign m_axil_wr.wvalid = s_axil_wr.wvalid; assign s_axil_wr.wready = m_axil_wr.wready; assign s_axil_wr.bresp = m_axil_wr.bresp; assign s_axil_wr.buser = BUSER_EN ? m_axil_wr.buser : '0; assign s_axil_wr.bvalid = m_axil_wr.bvalid; assign m_axil_wr.bready = s_axil_wr.bready; end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize // output is wider; upsize localparam [0:0] STATE_IDLE = 1'd0, STATE_DATA = 1'd1; logic [0:0] state_reg = STATE_IDLE, state_next; logic s_axil_awready_reg = 1'b0, s_axil_awready_next; logic s_axil_wready_reg = 1'b0, s_axil_wready_next; logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next; logic [2:0] m_axil_awprot_reg = '0, m_axil_awprot_next; logic [AWUSER_W-1:0] m_axil_awuser_reg = '0, m_axil_awuser_next; logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next; logic [M_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next; logic [M_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next; logic [WUSER_W-1:0] m_axil_wuser_reg = '0, m_axil_wuser_next; logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next; assign s_axil_wr.awready = s_axil_awready_reg; assign s_axil_wr.wready = s_axil_wready_reg; assign m_axil_wr.awaddr = m_axil_awaddr_reg; assign m_axil_wr.awprot = m_axil_awprot_reg; assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0; assign m_axil_wr.awvalid = m_axil_awvalid_reg; assign m_axil_wr.wdata = m_axil_wdata_reg; assign m_axil_wr.wstrb = m_axil_wstrb_reg; assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0; assign m_axil_wr.wvalid = m_axil_wvalid_reg; // B channel passthrough assign s_axil_wr.bresp = m_axil_wr.bresp; assign s_axil_wr.buser = BUSER_EN ? m_axil_wr.buser : '0; assign s_axil_wr.bvalid = m_axil_wr.bvalid; assign m_axil_wr.bready = s_axil_wr.bready; always_comb begin state_next = STATE_IDLE; s_axil_awready_next = 1'b0; s_axil_wready_next = 1'b0; m_axil_awaddr_next = m_axil_awaddr_reg; m_axil_awprot_next = m_axil_awprot_reg; m_axil_awuser_next = m_axil_awuser_reg; m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready; m_axil_wdata_next = m_axil_wdata_reg; m_axil_wstrb_next = m_axil_wstrb_reg; m_axil_wuser_next = m_axil_wuser_reg; m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready; case (state_reg) STATE_IDLE: begin s_axil_awready_next = !m_axil_wr.awvalid; if (s_axil_wr.awready && s_axil_wr.awvalid) begin s_axil_awready_next = 1'b0; m_axil_awaddr_next = s_axil_wr.awaddr; m_axil_awprot_next = s_axil_wr.awprot; m_axil_awuser_next = s_axil_wr.awuser; m_axil_awvalid_next = 1'b1; s_axil_wready_next = !m_axil_wr.wvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin s_axil_wready_next = !m_axil_wr.wvalid; if (s_axil_wr.wready && s_axil_wr.wvalid) begin s_axil_wready_next = 1'b0; m_axil_wdata_next = {(M_BYTE_LANES/S_BYTE_LANES){s_axil_wr.wdata}}; m_axil_wstrb_next = '0; m_axil_wstrb_next[m_axil_awaddr_reg[M_ADDR_BIT_OFFSET - 1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axil_wr.wstrb; m_axil_wuser_next = s_axil_wr.wuser; m_axil_wvalid_next = 1'b1; s_axil_awready_next = !m_axil_wr.awvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end default: begin state_next = STATE_IDLE; end endcase end always_ff @(posedge clk) begin state_reg <= state_next; s_axil_awready_reg <= s_axil_awready_next; s_axil_wready_reg <= s_axil_wready_next; m_axil_awaddr_reg <= m_axil_awaddr_next; m_axil_awprot_reg <= m_axil_awprot_next; m_axil_awuser_reg <= m_axil_awuser_next; m_axil_awvalid_reg <= m_axil_awvalid_next; m_axil_wdata_reg <= m_axil_wdata_next; m_axil_wstrb_reg <= m_axil_wstrb_next; m_axil_wuser_reg <= m_axil_wuser_next; m_axil_wvalid_reg <= m_axil_wvalid_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_awready_reg <= 1'b0; s_axil_wready_reg <= 1'b0; m_axil_awvalid_reg <= 1'b0; m_axil_wvalid_reg <= 1'b0; end end end else begin : downsize // output is narrower; downsize // output bus is wider localparam DATA_W = S_DATA_W; localparam STRB_W = S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES; localparam SEG_COUNT_W = $clog2(SEG_COUNT); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_RESP = 2'd3; logic [1:0] state_reg = STATE_IDLE, state_next; logic [DATA_W-1:0] data_reg = '0, data_next; logic [STRB_W-1:0] strb_reg = '0, strb_next; logic [SEG_COUNT_W-1:0] current_seg_reg = 0, current_seg_next; logic s_axil_awready_reg = 1'b0, s_axil_awready_next; logic s_axil_wready_reg = 1'b0, s_axil_wready_next; logic [1:0] s_axil_bresp_reg = '0, s_axil_bresp_next; logic [BUSER_W-1:0] s_axil_buser_reg = '0, s_axil_buser_next; logic s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next; logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next; logic [2:0] m_axil_awprot_reg = '0, m_axil_awprot_next; logic [AWUSER_W-1:0] m_axil_awuser_reg = '0, m_axil_awuser_next; logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next; logic [M_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next; logic [M_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next; logic [WUSER_W-1:0] m_axil_wuser_reg = '0, m_axil_wuser_next; logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next; logic m_axil_bready_reg = 1'b0, m_axil_bready_next; assign s_axil_wr.awready = s_axil_awready_reg; assign s_axil_wr.wready = s_axil_wready_reg; assign s_axil_wr.bresp = s_axil_bresp_reg; assign s_axil_wr.buser = BUSER_EN ? s_axil_buser_reg : '0; assign s_axil_wr.bvalid = s_axil_bvalid_reg; assign m_axil_wr.awaddr = m_axil_awaddr_reg; assign m_axil_wr.awprot = m_axil_awprot_reg; assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0; assign m_axil_wr.awvalid = m_axil_awvalid_reg; assign m_axil_wr.wdata = m_axil_wdata_reg; assign m_axil_wr.wstrb = m_axil_wstrb_reg; assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0; assign m_axil_wr.wvalid = m_axil_wvalid_reg; assign m_axil_wr.bready = m_axil_bready_reg; always_comb begin state_next = STATE_IDLE; data_next = data_reg; strb_next = strb_reg; current_seg_next = current_seg_reg; s_axil_awready_next = 1'b0; s_axil_wready_next = 1'b0; s_axil_bresp_next = s_axil_bresp_reg; s_axil_buser_next = s_axil_buser_reg; s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_wr.bready; m_axil_awaddr_next = m_axil_awaddr_reg; m_axil_awprot_next = m_axil_awprot_reg; m_axil_awuser_next = m_axil_awuser_reg; m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready; m_axil_wdata_next = m_axil_wdata_reg; m_axil_wstrb_next = m_axil_wstrb_reg; m_axil_wuser_next = m_axil_wuser_reg; m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready; m_axil_bready_next = 1'b0; // master output is narrower; may need several cycles case (state_reg) STATE_IDLE: begin s_axil_awready_next = !m_axil_wr.awvalid; current_seg_next = s_axil_wr.awaddr[M_ADDR_BIT_OFFSET +: SEG_COUNT_W]; s_axil_bresp_next = 2'd0; if (s_axil_wr.awready && s_axil_wr.awvalid) begin s_axil_awready_next = 1'b0; m_axil_awaddr_next = s_axil_wr.awaddr; m_axil_awprot_next = s_axil_wr.awprot; m_axil_awuser_next = s_axil_wr.awuser; m_axil_awvalid_next = 1'b1; s_axil_wready_next = !m_axil_wr.wvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin s_axil_wready_next = !m_axil_wr.wvalid; if (s_axil_wr.wready && s_axil_wr.wvalid) begin s_axil_wready_next = 1'b0; data_next = s_axil_wr.wdata; strb_next = s_axil_wr.wstrb; m_axil_wdata_next = data_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W]; m_axil_wstrb_next = strb_next[current_seg_reg*SEG_STRB_W +: SEG_STRB_W]; m_axil_wuser_next = s_axil_wr.wuser; m_axil_wvalid_next = 1'b1; m_axil_bready_next = !s_axil_wr.bvalid; current_seg_next = current_seg_reg + 1; state_next = STATE_RESP; end else begin state_next = STATE_DATA; end end STATE_RESP: begin m_axil_bready_next = !s_axil_wr.bvalid; if (m_axil_wr.bready && m_axil_wr.bvalid) begin m_axil_bready_next = 1'b0; m_axil_awaddr_next = (m_axil_awaddr_reg & M_ADDR_MASK) + SEG_STRB_W; m_axil_wdata_next = data_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W]; m_axil_wstrb_next = strb_next[current_seg_reg*SEG_STRB_W +: SEG_STRB_W]; s_axil_buser_next = m_axil_wr.buser; current_seg_next = current_seg_reg + 1; if (m_axil.bresp != 0) begin s_axil_bresp_next = m_axil_wr.bresp; end if (current_seg_reg == 0) begin s_axil_bvalid_next = 1'b1; s_axil_awready_next = !m_axil_wr.awvalid; state_next = STATE_IDLE; end else begin m_axil_awvalid_next = 1'b1; m_axil_wvalid_next = 1'b1; state_next = STATE_RESP; end end else begin state_next = STATE_RESP; end end default: begin state_next = STATE_IDLE; end endcase end always_ff @(posedge clk) begin state_reg <= state_next; data_reg <= data_next; strb_reg <= strb_next; current_seg_reg <= current_seg_next; s_axil_awready_reg <= s_axil_awready_next; s_axil_wready_reg <= s_axil_wready_next; s_axil_bresp_reg <= s_axil_bresp_next; s_axil_buser_reg <= s_axil_buser_next; s_axil_bvalid_reg <= s_axil_bvalid_next; m_axil_awaddr_reg <= m_axil_awaddr_next; m_axil_awprot_reg <= m_axil_awprot_next; m_axil_awuser_reg <= m_axil_awuser_next; m_axil_awvalid_reg <= m_axil_awvalid_next; m_axil_wdata_reg <= m_axil_wdata_next; m_axil_wstrb_reg <= m_axil_wstrb_next; m_axil_wuser_reg <= m_axil_wuser_next; m_axil_wvalid_reg <= m_axil_wvalid_next; m_axil_bready_reg <= m_axil_bready_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_awready_reg <= 1'b0; s_axil_wready_reg <= 1'b0; s_axil_bvalid_reg <= 1'b0; m_axil_awvalid_reg <= 1'b0; m_axil_wvalid_reg <= 1'b0; m_axil_bready_reg <= 1'b0; end end end endmodule `resetall