// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 register (read) */ module taxi_axi_register_rd # ( // AR channel register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter AR_REG_TYPE = 1, // R channel register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter R_REG_TYPE = 2 ) ( input wire logic clk, input wire logic rst, /* * AXI4 slave interface */ taxi_axi_if.rd_slv s_axi_rd, /* * AXI4 master interface */ taxi_axi_if.rd_mst m_axi_rd ); // extract parameters localparam DATA_W = s_axi_rd.DATA_W; localparam ADDR_W = s_axi_rd.ADDR_W; localparam STRB_W = s_axi_rd.STRB_W; localparam ID_W = s_axi_rd.ID_W; localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axi_rd.ARUSER_EN; localparam ARUSER_W = s_axi_rd.ARUSER_W; localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axi_rd.RUSER_EN; localparam RUSER_W = s_axi_rd.RUSER_W; if (m_axi_rd.DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (m_axi_rd.STRB_W != STRB_W) $fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)"); // AR channel if (AR_REG_TYPE > 1) begin // skid buffer, no bubble cycles // datapath registers logic s_axi_arready_reg = 1'b0; logic [ID_W-1:0] m_axi_arid_reg = '0; logic [ADDR_W-1:0] m_axi_araddr_reg = '0; logic [7:0] m_axi_arlen_reg = '0; logic [2:0] m_axi_arsize_reg = '0; logic [1:0] m_axi_arburst_reg = '0; logic m_axi_arlock_reg = '0; logic [3:0] m_axi_arcache_reg = '0; logic [2:0] m_axi_arprot_reg = '0; logic [3:0] m_axi_arqos_reg = '0; logic [3:0] m_axi_arregion_reg = '0; logic [ARUSER_W-1:0] m_axi_aruser_reg = '0; logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; logic [ID_W-1:0] temp_m_axi_arid_reg = '0; logic [ADDR_W-1:0] temp_m_axi_araddr_reg = '0; logic [7:0] temp_m_axi_arlen_reg = '0; logic [2:0] temp_m_axi_arsize_reg = '0; logic [1:0] temp_m_axi_arburst_reg = '0; logic temp_m_axi_arlock_reg = '0; logic [3:0] temp_m_axi_arcache_reg = '0; logic [2:0] temp_m_axi_arprot_reg = '0; logic [3:0] temp_m_axi_arqos_reg = '0; logic [3:0] temp_m_axi_arregion_reg = '0; logic [ARUSER_W-1:0] temp_m_axi_aruser_reg = '0; logic temp_m_axi_arvalid_reg = 1'b0, temp_m_axi_arvalid_next; // datapath control logic store_axi_ar_input_to_output; logic store_axi_ar_input_to_temp; logic store_axi_ar_temp_to_output; assign s_axi_rd.arready = s_axi_arready_reg; assign m_axi_rd.arid = m_axi_arid_reg; assign m_axi_rd.araddr = m_axi_araddr_reg; assign m_axi_rd.arlen = m_axi_arlen_reg; assign m_axi_rd.arsize = m_axi_arsize_reg; assign m_axi_rd.arburst = m_axi_arburst_reg; assign m_axi_rd.arlock = m_axi_arlock_reg; assign m_axi_rd.arcache = m_axi_arcache_reg; assign m_axi_rd.arprot = m_axi_arprot_reg; assign m_axi_rd.arqos = m_axi_arqos_reg; assign m_axi_rd.arregion = m_axi_arregion_reg; assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0; assign m_axi_rd.arvalid = m_axi_arvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) wire s_axi_arready_early = m_axi_rd.arready || (!temp_m_axi_arvalid_reg && (!m_axi_arvalid_reg || !s_axi_rd.arvalid)); always_comb begin // transfer sink ready state to source m_axi_arvalid_next = m_axi_arvalid_reg; temp_m_axi_arvalid_next = temp_m_axi_arvalid_reg; store_axi_ar_input_to_output = 1'b0; store_axi_ar_input_to_temp = 1'b0; store_axi_ar_temp_to_output = 1'b0; if (s_axi_arready_reg) begin // input is ready if (m_axi_rd.arready || !m_axi_arvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_arvalid_next = s_axi_rd.arvalid; store_axi_ar_input_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_arvalid_next = s_axi_rd.arvalid; store_axi_ar_input_to_temp = 1'b1; end end else if (m_axi_rd.arready) begin // input is not ready, but output is ready m_axi_arvalid_next = temp_m_axi_arvalid_reg; temp_m_axi_arvalid_next = 1'b0; store_axi_ar_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin s_axi_arready_reg <= s_axi_arready_early; m_axi_arvalid_reg <= m_axi_arvalid_next; temp_m_axi_arvalid_reg <= temp_m_axi_arvalid_next; // datapath if (store_axi_ar_input_to_output) begin m_axi_arid_reg <= s_axi_rd.arid; m_axi_araddr_reg <= s_axi_rd.araddr; m_axi_arlen_reg <= s_axi_rd.arlen; m_axi_arsize_reg <= s_axi_rd.arsize; m_axi_arburst_reg <= s_axi_rd.arburst; m_axi_arlock_reg <= s_axi_rd.arlock; m_axi_arcache_reg <= s_axi_rd.arcache; m_axi_arprot_reg <= s_axi_rd.arprot; m_axi_arqos_reg <= s_axi_rd.arqos; m_axi_arregion_reg <= s_axi_rd.arregion; m_axi_aruser_reg <= s_axi_rd.aruser; end else if (store_axi_ar_temp_to_output) begin m_axi_arid_reg <= temp_m_axi_arid_reg; m_axi_araddr_reg <= temp_m_axi_araddr_reg; m_axi_arlen_reg <= temp_m_axi_arlen_reg; m_axi_arsize_reg <= temp_m_axi_arsize_reg; m_axi_arburst_reg <= temp_m_axi_arburst_reg; m_axi_arlock_reg <= temp_m_axi_arlock_reg; m_axi_arcache_reg <= temp_m_axi_arcache_reg; m_axi_arprot_reg <= temp_m_axi_arprot_reg; m_axi_arqos_reg <= temp_m_axi_arqos_reg; m_axi_arregion_reg <= temp_m_axi_arregion_reg; m_axi_aruser_reg <= temp_m_axi_aruser_reg; end if (store_axi_ar_input_to_temp) begin temp_m_axi_arid_reg <= s_axi_rd.arid; temp_m_axi_araddr_reg <= s_axi_rd.araddr; temp_m_axi_arlen_reg <= s_axi_rd.arlen; temp_m_axi_arsize_reg <= s_axi_rd.arsize; temp_m_axi_arburst_reg <= s_axi_rd.arburst; temp_m_axi_arlock_reg <= s_axi_rd.arlock; temp_m_axi_arcache_reg <= s_axi_rd.arcache; temp_m_axi_arprot_reg <= s_axi_rd.arprot; temp_m_axi_arqos_reg <= s_axi_rd.arqos; temp_m_axi_arregion_reg <= s_axi_rd.arregion; temp_m_axi_aruser_reg <= s_axi_rd.aruser; end if (rst) begin s_axi_arready_reg <= 1'b0; m_axi_arvalid_reg <= 1'b0; temp_m_axi_arvalid_reg <= 1'b0; end end end else if (AR_REG_TYPE == 1) begin // simple register, inserts bubble cycles // datapath registers logic s_axi_arready_reg = 1'b0; logic [ID_W-1:0] m_axi_arid_reg = '0; logic [ADDR_W-1:0] m_axi_araddr_reg = '0; logic [7:0] m_axi_arlen_reg = '0; logic [2:0] m_axi_arsize_reg = '0; logic [1:0] m_axi_arburst_reg = '0; logic m_axi_arlock_reg = '0; logic [3:0] m_axi_arcache_reg = '0; logic [2:0] m_axi_arprot_reg = '0; logic [3:0] m_axi_arqos_reg = '0; logic [3:0] m_axi_arregion_reg = '0; logic [ARUSER_W-1:0] m_axi_aruser_reg = '0; logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; // datapath control logic store_axi_ar_input_to_output; assign s_axi_rd.arready = s_axi_arready_reg; assign m_axi_rd.arid = m_axi_arid_reg; assign m_axi_rd.araddr = m_axi_araddr_reg; assign m_axi_rd.arlen = m_axi_arlen_reg; assign m_axi_rd.arsize = m_axi_arsize_reg; assign m_axi_rd.arburst = m_axi_arburst_reg; assign m_axi_rd.arlock = m_axi_arlock_reg; assign m_axi_rd.arcache = m_axi_arcache_reg; assign m_axi_rd.arprot = m_axi_arprot_reg; assign m_axi_rd.arqos = m_axi_arqos_reg; assign m_axi_rd.arregion = m_axi_arregion_reg; assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0; assign m_axi_rd.arvalid = m_axi_arvalid_reg; // enable ready input next cycle if output buffer will be empty wire s_axi_arready_early = !m_axi_arvalid_next; always_comb begin // transfer sink ready state to source m_axi_arvalid_next = m_axi_arvalid_reg; store_axi_ar_input_to_output = 1'b0; if (s_axi_arready_reg) begin m_axi_arvalid_next = s_axi_rd.arvalid; store_axi_ar_input_to_output = 1'b1; end else if (m_axi_rd.arready) begin m_axi_arvalid_next = 1'b0; end end always_ff @(posedge clk) begin s_axi_arready_reg <= s_axi_arready_early; m_axi_arvalid_reg <= m_axi_arvalid_next; // datapath if (store_axi_ar_input_to_output) begin m_axi_arid_reg <= s_axi_rd.arid; m_axi_araddr_reg <= s_axi_rd.araddr; m_axi_arlen_reg <= s_axi_rd.arlen; m_axi_arsize_reg <= s_axi_rd.arsize; m_axi_arburst_reg <= s_axi_rd.arburst; m_axi_arlock_reg <= s_axi_rd.arlock; m_axi_arcache_reg <= s_axi_rd.arcache; m_axi_arprot_reg <= s_axi_rd.arprot; m_axi_arqos_reg <= s_axi_rd.arqos; m_axi_arregion_reg <= s_axi_rd.arregion; m_axi_aruser_reg <= s_axi_rd.aruser; end if (rst) begin s_axi_arready_reg <= 1'b0; m_axi_arvalid_reg <= 1'b0; end end end else begin // bypass AR channel assign m_axi_rd.arid = s_axi_rd.arid; assign m_axi_rd.araddr = s_axi_rd.araddr; assign m_axi_rd.arlen = s_axi_rd.arlen; assign m_axi_rd.arsize = s_axi_rd.arsize; assign m_axi_rd.arburst = s_axi_rd.arburst; assign m_axi_rd.arlock = s_axi_rd.arlock; assign m_axi_rd.arcache = s_axi_rd.arcache; assign m_axi_rd.arprot = s_axi_rd.arprot; assign m_axi_rd.arqos = s_axi_rd.arqos; assign m_axi_rd.arregion = s_axi_rd.arregion; assign m_axi_rd.aruser = ARUSER_EN ? s_axi_rd.aruser : '0; assign m_axi_rd.arvalid = s_axi_rd.arvalid; assign s_axi_rd.arready = m_axi_rd.arready; end // R channel if (R_REG_TYPE > 1) begin // skid buffer, no bubble cycles // datapath registers logic m_axi_rready_reg = 1'b0; logic [ID_W-1:0] s_axi_rid_reg = '0; logic [DATA_W-1:0] s_axi_rdata_reg = '0; logic [1:0] s_axi_rresp_reg = 2'b0; logic s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] s_axi_ruser_reg = '0; logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; logic [ID_W-1:0] temp_s_axi_rid_reg = '0; logic [DATA_W-1:0] temp_s_axi_rdata_reg = '0; logic [1:0] temp_s_axi_rresp_reg = 2'b0; logic temp_s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] temp_s_axi_ruser_reg = '0; logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next; // datapath control logic store_axi_r_input_to_output; logic store_axi_r_input_to_temp; logic store_axi_r_temp_to_output; assign m_axi_rd.rready = m_axi_rready_reg; assign s_axi_rd.rid = s_axi_rid_reg; assign s_axi_rd.rdata = s_axi_rdata_reg; assign s_axi_rd.rresp = s_axi_rresp_reg; assign s_axi_rd.rlast = s_axi_rlast_reg; assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0; assign s_axi_rd.rvalid = s_axi_rvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) wire m_axi_rready_early = s_axi_rd.rready || (!temp_s_axi_rvalid_reg && (!s_axi_rvalid_reg || !m_axi_rd.rvalid)); always_comb begin // transfer sink ready state to source s_axi_rvalid_next = s_axi_rvalid_reg; temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg; store_axi_r_input_to_output = 1'b0; store_axi_r_input_to_temp = 1'b0; store_axi_r_temp_to_output = 1'b0; if (m_axi_rready_reg) begin // input is ready if (s_axi_rd.rready || !s_axi_rvalid_reg) begin // output is ready or currently not valid, transfer data to output s_axi_rvalid_next = m_axi_rd.rvalid; store_axi_r_input_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_s_axi_rvalid_next = m_axi_rd.rvalid; store_axi_r_input_to_temp = 1'b1; end end else if (s_axi_rd.rready) begin // input is not ready, but output is ready s_axi_rvalid_next = temp_s_axi_rvalid_reg; temp_s_axi_rvalid_next = 1'b0; store_axi_r_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin m_axi_rready_reg <= m_axi_rready_early; s_axi_rvalid_reg <= s_axi_rvalid_next; temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next; // datapath if (store_axi_r_input_to_output) begin s_axi_rid_reg <= m_axi_rd.rid; s_axi_rdata_reg <= m_axi_rd.rdata; s_axi_rresp_reg <= m_axi_rd.rresp; s_axi_rlast_reg <= m_axi_rd.rlast; s_axi_ruser_reg <= m_axi_rd.ruser; end else if (store_axi_r_temp_to_output) begin s_axi_rid_reg <= temp_s_axi_rid_reg; s_axi_rdata_reg <= temp_s_axi_rdata_reg; s_axi_rresp_reg <= temp_s_axi_rresp_reg; s_axi_rlast_reg <= temp_s_axi_rlast_reg; s_axi_ruser_reg <= temp_s_axi_ruser_reg; end if (store_axi_r_input_to_temp) begin temp_s_axi_rid_reg <= m_axi_rd.rid; temp_s_axi_rdata_reg <= m_axi_rd.rdata; temp_s_axi_rresp_reg <= m_axi_rd.rresp; temp_s_axi_rlast_reg <= m_axi_rd.rlast; temp_s_axi_ruser_reg <= m_axi_rd.ruser; end if (rst) begin m_axi_rready_reg <= 1'b0; s_axi_rvalid_reg <= 1'b0; temp_s_axi_rvalid_reg <= 1'b0; end end end else if (R_REG_TYPE == 1) begin // simple register, inserts bubble cycles // datapath registers logic m_axi_rready_reg = 1'b0; logic [ID_W-1:0] s_axi_rid_reg = '0; logic [DATA_W-1:0] s_axi_rdata_reg = '0; logic [1:0] s_axi_rresp_reg = 2'b0; logic s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] s_axi_ruser_reg = '0; logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; // datapath control logic store_axi_r_input_to_output; assign m_axi_rd.rready = m_axi_rready_reg; assign s_axi_rd.rid = s_axi_rid_reg; assign s_axi_rd.rdata = s_axi_rdata_reg; assign s_axi_rd.rresp = s_axi_rresp_reg; assign s_axi_rd.rlast = s_axi_rlast_reg; assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0; assign s_axi_rd.rvalid = s_axi_rvalid_reg; // enable ready input next cycle if output buffer will be empty wire m_axi_rready_early = !s_axi_rvalid_next; always_comb begin // transfer sink ready state to source s_axi_rvalid_next = s_axi_rvalid_reg; store_axi_r_input_to_output = 1'b0; if (m_axi_rready_reg) begin s_axi_rvalid_next = m_axi_rd.rvalid; store_axi_r_input_to_output = 1'b1; end else if (s_axi_rd.rready) begin s_axi_rvalid_next = 1'b0; end end always_ff @(posedge clk) begin m_axi_rready_reg <= m_axi_rready_early; s_axi_rvalid_reg <= s_axi_rvalid_next; // datapath if (store_axi_r_input_to_output) begin s_axi_rid_reg <= m_axi_rd.rid; s_axi_rdata_reg <= m_axi_rd.rdata; s_axi_rresp_reg <= m_axi_rd.rresp; s_axi_rlast_reg <= m_axi_rd.rlast; s_axi_ruser_reg <= m_axi_rd.ruser; end if (rst) begin m_axi_rready_reg <= 1'b0; s_axi_rvalid_reg <= 1'b0; end end end else begin // bypass R channel assign s_axi_rd.rid = m_axi_rd.rid; assign s_axi_rd.rdata = m_axi_rd.rdata; assign s_axi_rd.rresp = m_axi_rd.rresp; assign s_axi_rd.rlast = m_axi_rd.rlast; assign s_axi_rd.ruser = RUSER_EN ? m_axi_rd.ruser : '0; assign s_axi_rd.rvalid = m_axi_rd.rvalid; assign m_axi_rd.rready = s_axi_rd.rready; end endmodule `resetall