// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 register (write) */ module taxi_axi_register_wr # ( // AW channel register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter AW_REG_TYPE = 1, // W channel register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter W_REG_TYPE = 2, // B channel register type // 0 to bypass, 1 for simple buffer, 2 for skid buffer parameter B_REG_TYPE = 1 ) ( input wire logic clk, input wire logic rst, /* * AXI4 slave interface */ taxi_axi_if.wr_slv s_axi_wr, /* * AXI4 master interface */ taxi_axi_if.wr_mst m_axi_wr ); // extract parameters localparam DATA_W = s_axi_wr.DATA_W; localparam ADDR_W = s_axi_wr.ADDR_W; localparam STRB_W = s_axi_wr.STRB_W; localparam ID_W = s_axi_wr.ID_W; localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN; localparam AWUSER_W = s_axi_wr.AWUSER_W; localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN; localparam WUSER_W = s_axi_wr.WUSER_W; localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN; localparam BUSER_W = s_axi_wr.BUSER_W; if (m_axi_wr.DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (m_axi_wr.STRB_W != STRB_W) $fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)"); // AW channel if (AW_REG_TYPE > 1) begin // skid buffer, no bubble cycles // datapath registers logic s_axi_awready_reg = 1'b0; logic [ID_W-1:0] m_axi_awid_reg = '0; logic [ADDR_W-1:0] m_axi_awaddr_reg = '0; logic [7:0] m_axi_awlen_reg = '0; logic [2:0] m_axi_awsize_reg = '0; logic [1:0] m_axi_awburst_reg = '0; logic m_axi_awlock_reg = '0; logic [3:0] m_axi_awcache_reg = '0; logic [2:0] m_axi_awprot_reg = '0; logic [3:0] m_axi_awqos_reg = '0; logic [3:0] m_axi_awregion_reg = '0; logic [AWUSER_W-1:0] m_axi_awuser_reg = '0; logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; logic [ID_W-1:0] temp_m_axi_awid_reg = '0; logic [ADDR_W-1:0] temp_m_axi_awaddr_reg = '0; logic [7:0] temp_m_axi_awlen_reg = '0; logic [2:0] temp_m_axi_awsize_reg = '0; logic [1:0] temp_m_axi_awburst_reg = '0; logic temp_m_axi_awlock_reg = '0; logic [3:0] temp_m_axi_awcache_reg = '0; logic [2:0] temp_m_axi_awprot_reg = '0; logic [3:0] temp_m_axi_awqos_reg = '0; logic [3:0] temp_m_axi_awregion_reg = '0; logic [AWUSER_W-1:0] temp_m_axi_awuser_reg = '0; logic temp_m_axi_awvalid_reg = 1'b0, temp_m_axi_awvalid_next; // datapath control logic store_axi_aw_input_to_output; logic store_axi_aw_input_to_temp; logic store_axi_aw_temp_to_output; assign s_axi_wr.awready = s_axi_awready_reg; assign m_axi_wr.awid = m_axi_awid_reg; assign m_axi_wr.awaddr = m_axi_awaddr_reg; assign m_axi_wr.awlen = m_axi_awlen_reg; assign m_axi_wr.awsize = m_axi_awsize_reg; assign m_axi_wr.awburst = m_axi_awburst_reg; assign m_axi_wr.awlock = m_axi_awlock_reg; assign m_axi_wr.awcache = m_axi_awcache_reg; assign m_axi_wr.awprot = m_axi_awprot_reg; assign m_axi_wr.awqos = m_axi_awqos_reg; assign m_axi_wr.awregion = m_axi_awregion_reg; assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0; assign m_axi_wr.awvalid = m_axi_awvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) wire s_axi_awready_early = m_axi_wr.awready || (!temp_m_axi_awvalid_reg && (!m_axi_awvalid_reg || !s_axi_wr.awvalid)); always_comb begin // transfer sink ready state to source m_axi_awvalid_next = m_axi_awvalid_reg; temp_m_axi_awvalid_next = temp_m_axi_awvalid_reg; store_axi_aw_input_to_output = 1'b0; store_axi_aw_input_to_temp = 1'b0; store_axi_aw_temp_to_output = 1'b0; if (s_axi_awready_reg) begin // input is ready if (m_axi_wr.awready || !m_axi_awvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_awvalid_next = s_axi_wr.awvalid; store_axi_aw_input_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_awvalid_next = s_axi_wr.awvalid; store_axi_aw_input_to_temp = 1'b1; end end else if (m_axi_wr.awready) begin // input is not ready, but output is ready m_axi_awvalid_next = temp_m_axi_awvalid_reg; temp_m_axi_awvalid_next = 1'b0; store_axi_aw_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin s_axi_awready_reg <= s_axi_awready_early; m_axi_awvalid_reg <= m_axi_awvalid_next; temp_m_axi_awvalid_reg <= temp_m_axi_awvalid_next; // datapath if (store_axi_aw_input_to_output) begin m_axi_awid_reg <= s_axi_wr.awid; m_axi_awaddr_reg <= s_axi_wr.awaddr; m_axi_awlen_reg <= s_axi_wr.awlen; m_axi_awsize_reg <= s_axi_wr.awsize; m_axi_awburst_reg <= s_axi_wr.awburst; m_axi_awlock_reg <= s_axi_wr.awlock; m_axi_awcache_reg <= s_axi_wr.awcache; m_axi_awprot_reg <= s_axi_wr.awprot; m_axi_awqos_reg <= s_axi_wr.awqos; m_axi_awregion_reg <= s_axi_wr.awregion; m_axi_awuser_reg <= s_axi_wr.awuser; end else if (store_axi_aw_temp_to_output) begin m_axi_awid_reg <= temp_m_axi_awid_reg; m_axi_awaddr_reg <= temp_m_axi_awaddr_reg; m_axi_awlen_reg <= temp_m_axi_awlen_reg; m_axi_awsize_reg <= temp_m_axi_awsize_reg; m_axi_awburst_reg <= temp_m_axi_awburst_reg; m_axi_awlock_reg <= temp_m_axi_awlock_reg; m_axi_awcache_reg <= temp_m_axi_awcache_reg; m_axi_awprot_reg <= temp_m_axi_awprot_reg; m_axi_awqos_reg <= temp_m_axi_awqos_reg; m_axi_awregion_reg <= temp_m_axi_awregion_reg; m_axi_awuser_reg <= temp_m_axi_awuser_reg; end if (store_axi_aw_input_to_temp) begin temp_m_axi_awid_reg <= s_axi_wr.awid; temp_m_axi_awaddr_reg <= s_axi_wr.awaddr; temp_m_axi_awlen_reg <= s_axi_wr.awlen; temp_m_axi_awsize_reg <= s_axi_wr.awsize; temp_m_axi_awburst_reg <= s_axi_wr.awburst; temp_m_axi_awlock_reg <= s_axi_wr.awlock; temp_m_axi_awcache_reg <= s_axi_wr.awcache; temp_m_axi_awprot_reg <= s_axi_wr.awprot; temp_m_axi_awqos_reg <= s_axi_wr.awqos; temp_m_axi_awregion_reg <= s_axi_wr.awregion; temp_m_axi_awuser_reg <= s_axi_wr.awuser; end if (rst) begin s_axi_awready_reg <= 1'b0; m_axi_awvalid_reg <= 1'b0; temp_m_axi_awvalid_reg <= 1'b0; end end end else if (AW_REG_TYPE == 1) begin // simple register, inserts bubble cycles // datapath registers logic s_axi_awready_reg = 1'b0; logic [ID_W-1:0] m_axi_awid_reg = '0; logic [ADDR_W-1:0] m_axi_awaddr_reg = '0; logic [7:0] m_axi_awlen_reg = '0; logic [2:0] m_axi_awsize_reg = '0; logic [1:0] m_axi_awburst_reg = '0; logic m_axi_awlock_reg = '0; logic [3:0] m_axi_awcache_reg = '0; logic [2:0] m_axi_awprot_reg = '0; logic [3:0] m_axi_awqos_reg = '0; logic [3:0] m_axi_awregion_reg = '0; logic [AWUSER_W-1:0] m_axi_awuser_reg = '0; logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next; // datapath control logic store_axi_aw_input_to_output; assign s_axi_wr.awready = s_axi_awready_reg; assign m_axi_wr.awid = m_axi_awid_reg; assign m_axi_wr.awaddr = m_axi_awaddr_reg; assign m_axi_wr.awlen = m_axi_awlen_reg; assign m_axi_wr.awsize = m_axi_awsize_reg; assign m_axi_wr.awburst = m_axi_awburst_reg; assign m_axi_wr.awlock = m_axi_awlock_reg; assign m_axi_wr.awcache = m_axi_awcache_reg; assign m_axi_wr.awprot = m_axi_awprot_reg; assign m_axi_wr.awqos = m_axi_awqos_reg; assign m_axi_wr.awregion = m_axi_awregion_reg; assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0; assign m_axi_wr.awvalid = m_axi_awvalid_reg; // enable ready input next cycle if output buffer will be empty wire s_axi_awready_eawly = !m_axi_awvalid_next; always_comb begin // transfer sink ready state to source m_axi_awvalid_next = m_axi_awvalid_reg; store_axi_aw_input_to_output = 1'b0; if (s_axi_awready_reg) begin m_axi_awvalid_next = s_axi_wr.awvalid; store_axi_aw_input_to_output = 1'b1; end else if (m_axi_wr.awready) begin m_axi_awvalid_next = 1'b0; end end always_ff @(posedge clk) begin s_axi_awready_reg <= s_axi_awready_eawly; m_axi_awvalid_reg <= m_axi_awvalid_next; // datapath if (store_axi_aw_input_to_output) begin m_axi_awid_reg <= s_axi_wr.awid; m_axi_awaddr_reg <= s_axi_wr.awaddr; m_axi_awlen_reg <= s_axi_wr.awlen; m_axi_awsize_reg <= s_axi_wr.awsize; m_axi_awburst_reg <= s_axi_wr.awburst; m_axi_awlock_reg <= s_axi_wr.awlock; m_axi_awcache_reg <= s_axi_wr.awcache; m_axi_awprot_reg <= s_axi_wr.awprot; m_axi_awqos_reg <= s_axi_wr.awqos; m_axi_awregion_reg <= s_axi_wr.awregion; m_axi_awuser_reg <= s_axi_wr.awuser; end if (rst) begin s_axi_awready_reg <= 1'b0; m_axi_awvalid_reg <= 1'b0; end end end else begin // bypass AW channel assign m_axi_wr.awid = s_axi_wr.awid; assign m_axi_wr.awaddr = s_axi_wr.awaddr; assign m_axi_wr.awlen = s_axi_wr.awlen; assign m_axi_wr.awsize = s_axi_wr.awsize; assign m_axi_wr.awburst = s_axi_wr.awburst; assign m_axi_wr.awlock = s_axi_wr.awlock; assign m_axi_wr.awcache = s_axi_wr.awcache; assign m_axi_wr.awprot = s_axi_wr.awprot; assign m_axi_wr.awqos = s_axi_wr.awqos; assign m_axi_wr.awregion = s_axi_wr.awregion; assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0; assign m_axi_wr.awvalid = s_axi_wr.awvalid; assign s_axi_wr.awready = m_axi_wr.awready; end // W channel if (W_REG_TYPE > 1) begin // skid buffer, no bubble cycles // datapath registers logic s_axi_wready_reg = 1'b0; logic [DATA_W-1:0] m_axi_wdata_reg = '0; logic [STRB_W-1:0] m_axi_wstrb_reg = '0; logic m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] m_axi_wuser_reg = '0; logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; logic [DATA_W-1:0] temp_m_axi_wdata_reg = '0; logic [STRB_W-1:0] temp_m_axi_wstrb_reg = '0; logic temp_m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] temp_m_axi_wuser_reg = '0; logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next; // datapath control logic store_axi_w_input_to_output; logic store_axi_w_input_to_temp; logic store_axi_w_temp_to_output; assign s_axi_wr.wready = s_axi_wready_reg; assign m_axi_wr.wdata = m_axi_wdata_reg; assign m_axi_wr.wstrb = m_axi_wstrb_reg; assign m_axi_wr.wlast = m_axi_wlast_reg; assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0; assign m_axi_wr.wvalid = m_axi_wvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) wire s_axi_wready_early = m_axi_wr.wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !s_axi_wr.wvalid)); always_comb begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg; store_axi_w_input_to_output = 1'b0; store_axi_w_input_to_temp = 1'b0; store_axi_w_temp_to_output = 1'b0; if (s_axi_wready_reg) begin // input is ready if (m_axi_wr.wready || !m_axi_wvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axi_wvalid_next = s_axi_wr.wvalid; store_axi_w_input_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axi_wvalid_next = s_axi_wr.wvalid; store_axi_w_input_to_temp = 1'b1; end end else if (m_axi_wr.wready) begin // input is not ready, but output is ready m_axi_wvalid_next = temp_m_axi_wvalid_reg; temp_m_axi_wvalid_next = 1'b0; store_axi_w_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin s_axi_wready_reg <= s_axi_wready_early; m_axi_wvalid_reg <= m_axi_wvalid_next; temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next; // datapath if (store_axi_w_input_to_output) begin m_axi_wdata_reg <= s_axi_wr.wdata; m_axi_wstrb_reg <= s_axi_wr.wstrb; m_axi_wlast_reg <= s_axi_wr.wlast; m_axi_wuser_reg <= s_axi_wr.wuser; end else if (store_axi_w_temp_to_output) begin m_axi_wdata_reg <= temp_m_axi_wdata_reg; m_axi_wstrb_reg <= temp_m_axi_wstrb_reg; m_axi_wlast_reg <= temp_m_axi_wlast_reg; m_axi_wuser_reg <= temp_m_axi_wuser_reg; end if (store_axi_w_input_to_temp) begin temp_m_axi_wdata_reg <= s_axi_wr.wdata; temp_m_axi_wstrb_reg <= s_axi_wr.wstrb; temp_m_axi_wlast_reg <= s_axi_wr.wlast; temp_m_axi_wuser_reg <= s_axi_wr.wuser; end if (rst) begin s_axi_wready_reg <= 1'b0; m_axi_wvalid_reg <= 1'b0; temp_m_axi_wvalid_reg <= 1'b0; end end end else if (W_REG_TYPE == 1) begin // simple register, inserts bubble cycles // datapath registers logic s_axi_wready_reg = 1'b0; logic [DATA_W-1:0] m_axi_wdata_reg = '0; logic [STRB_W-1:0] m_axi_wstrb_reg = '0; logic m_axi_wlast_reg = 1'b0; logic [WUSER_W-1:0] m_axi_wuser_reg = '0; logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next; // datapath control logic store_axi_w_input_to_output; assign s_axi_wr.wready = s_axi_wready_reg; assign m_axi_wr.wdata = m_axi_wdata_reg; assign m_axi_wr.wstrb = m_axi_wstrb_reg; assign m_axi_wr.wlast = m_axi_wlast_reg; assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0; assign m_axi_wr.wvalid = m_axi_wvalid_reg; // enable ready input next cycle if output buffer will be empty wire s_axi_wready_ewly = !m_axi_wvalid_next; always_comb begin // transfer sink ready state to source m_axi_wvalid_next = m_axi_wvalid_reg; store_axi_w_input_to_output = 1'b0; if (s_axi_wready_reg) begin m_axi_wvalid_next = s_axi_wr.wvalid; store_axi_w_input_to_output = 1'b1; end else if (m_axi_wr.wready) begin m_axi_wvalid_next = 1'b0; end end always_ff @(posedge clk) begin s_axi_wready_reg <= s_axi_wready_ewly; m_axi_wvalid_reg <= m_axi_wvalid_next; // datapath if (store_axi_w_input_to_output) begin m_axi_wdata_reg <= s_axi_wr.wdata; m_axi_wstrb_reg <= s_axi_wr.wstrb; m_axi_wlast_reg <= s_axi_wr.wlast; m_axi_wuser_reg <= s_axi_wr.wuser; end if (rst) begin s_axi_wready_reg <= 1'b0; m_axi_wvalid_reg <= 1'b0; end end end else begin // bypass W channel assign m_axi_wr.wdata = s_axi_wr.wdata; assign m_axi_wr.wstrb = s_axi_wr.wstrb; assign m_axi_wr.wlast = s_axi_wr.wlast; assign m_axi_wr.wuser = WUSER_EN ? s_axi_wr.wuser : '0; assign m_axi_wr.wvalid = s_axi_wr.wvalid; assign s_axi_wr.wready = m_axi_wr.wready; end // B channel if (B_REG_TYPE > 1) begin // skid buffer, no bubble cycles // datapath registers logic m_axi_bready_reg = 1'b0; logic [ID_W-1:0] s_axi_bid_reg = '0; logic [1:0] s_axi_bresp_reg = 2'b0; logic [BUSER_W-1:0] s_axi_buser_reg = '0; logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; logic [ID_W-1:0] temp_s_axi_bid_reg = '0; logic [1:0] temp_s_axi_bresp_reg = 2'b0; logic [BUSER_W-1:0] temp_s_axi_buser_reg = '0; logic temp_s_axi_bvalid_reg = 1'b0, temp_s_axi_bvalid_next; // datapath control logic store_axi_b_input_to_output; logic store_axi_b_input_to_temp; logic store_axi_b_temp_to_output; assign m_axi_wr.bready = m_axi_bready_reg; assign s_axi_wr.bid = s_axi_bid_reg; assign s_axi_wr.bresp = s_axi_bresp_reg; assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0; assign s_axi_wr.bvalid = s_axi_bvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) wire m_axi_bready_early = s_axi_wr.bready || (!temp_s_axi_bvalid_reg && (!s_axi_bvalid_reg || !m_axi_wr.bvalid)); always_comb begin // transfer sink ready state to source s_axi_bvalid_next = s_axi_bvalid_reg; temp_s_axi_bvalid_next = temp_s_axi_bvalid_reg; store_axi_b_input_to_output = 1'b0; store_axi_b_input_to_temp = 1'b0; store_axi_b_temp_to_output = 1'b0; if (m_axi_bready_reg) begin // input is ready if (s_axi_wr.bready || !s_axi_bvalid_reg) begin // output is ready or currently not valid, transfer data to output s_axi_bvalid_next = m_axi_wr.bvalid; store_axi_b_input_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_s_axi_bvalid_next = m_axi_wr.bvalid; store_axi_b_input_to_temp = 1'b1; end end else if (s_axi_wr.bready) begin // input is not ready, but output is ready s_axi_bvalid_next = temp_s_axi_bvalid_reg; temp_s_axi_bvalid_next = 1'b0; store_axi_b_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin m_axi_bready_reg <= m_axi_bready_early; s_axi_bvalid_reg <= s_axi_bvalid_next; temp_s_axi_bvalid_reg <= temp_s_axi_bvalid_next; // datapath if (store_axi_b_input_to_output) begin s_axi_bid_reg <= m_axi_wr.bid; s_axi_bresp_reg <= m_axi_wr.bresp; s_axi_buser_reg <= m_axi_wr.buser; end else if (store_axi_b_temp_to_output) begin s_axi_bid_reg <= temp_s_axi_bid_reg; s_axi_bresp_reg <= temp_s_axi_bresp_reg; s_axi_buser_reg <= temp_s_axi_buser_reg; end if (store_axi_b_input_to_temp) begin temp_s_axi_bid_reg <= m_axi_wr.bid; temp_s_axi_bresp_reg <= m_axi_wr.bresp; temp_s_axi_buser_reg <= m_axi_wr.buser; end if (rst) begin m_axi_bready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; temp_s_axi_bvalid_reg <= 1'b0; end end end else if (B_REG_TYPE == 1) begin // simple register, inserts bubble cycles // datapath registers logic m_axi_bready_reg = 1'b0; logic [ID_W-1:0] s_axi_bid_reg = '0; logic [1:0] s_axi_bresp_reg = 2'b0; logic [BUSER_W-1:0] s_axi_buser_reg = '0; logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; // datapath control logic store_axi_b_input_to_output; assign m_axi_wr.bready = m_axi_bready_reg; assign s_axi_wr.bid = s_axi_bid_reg; assign s_axi_wr.bresp = s_axi_bresp_reg; assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0; assign s_axi_wr.bvalid = s_axi_bvalid_reg; // enable ready input next cycle if output buffer will be empty wire m_axi_bready_early = !s_axi_bvalid_next; always_comb begin // transfer sink ready state to source s_axi_bvalid_next = s_axi_bvalid_reg; store_axi_b_input_to_output = 1'b0; if (m_axi_bready_reg) begin s_axi_bvalid_next = m_axi_wr.bvalid; store_axi_b_input_to_output = 1'b1; end else if (s_axi_wr.bready) begin s_axi_bvalid_next = 1'b0; end end always_ff @(posedge clk) begin m_axi_bready_reg <= m_axi_bready_early; s_axi_bvalid_reg <= s_axi_bvalid_next; // datapath if (store_axi_b_input_to_output) begin s_axi_bid_reg <= m_axi_wr.bid; s_axi_bresp_reg <= m_axi_wr.bresp; s_axi_buser_reg <= m_axi_wr.buser; end if (rst) begin m_axi_bready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; end end end else begin // bypass B channel assign s_axi_wr.bid = m_axi_wr.bid; assign s_axi_wr.bresp = m_axi_wr.bresp; assign s_axi_wr.buser = BUSER_EN ? m_axi_wr.buser : '0; assign s_axi_wr.bvalid = m_axi_wr.bvalid; assign m_axi_wr.bready = s_axi_wr.bready; end endmodule `resetall