// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2019-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1fs `default_nettype none /* * PTP clock CDC (clock domain crossing) module */ module taxi_ptp_clock_cdc # ( parameter TS_W = 96, parameter NS_W = 4, parameter LOG_RATE = 3, parameter PIPELINE_OUTPUT = 0 ) ( input wire logic input_clk, input wire logic input_rst, input wire logic output_clk, input wire logic output_rst, input wire logic sample_clk, /* * Timestamp inputs from source PTP clock */ input wire logic [TS_W-1:0] input_ts, input wire logic input_ts_step, /* * Timestamp outputs */ output wire logic [TS_W-1:0] output_ts, output wire logic output_ts_step, /* * PPS output */ output wire logic output_pps, output wire logic output_pps_str, /* * Status */ output wire logic locked ); // Check configuration if (TS_W != 64 && TS_W != 96) $fatal(0, "Error: Timestamp width must be 64 or 96"); localparam FNS_W = 16; localparam TS_NS_W = TS_W == 96 ? 30 : 48; localparam TS_FNS_W = FNS_W > 16 ? 16 : FNS_W; localparam CMP_FNS_W = 4; localparam PHASE_CNT_W = LOG_RATE; localparam PHASE_ACC_W = PHASE_CNT_W+16; localparam LOG_SAMPLE_SYNC_RATE = LOG_RATE; localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2; localparam LOG_PHASE_ERR_RATE = 4; localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2; localparam DEST_SYNC_LOCK_W = 7; localparam FREQ_LOCK_W = 8; localparam PTP_LOCK_W = 8; localparam TIME_ERR_INT_W = NS_W+FNS_W; localparam [30:0] NS_PER_S = 31'd1_000_000_000; logic [NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next; logic [NS_W+FNS_W-1:0] period_ns_delay_reg = '0, period_ns_delay_next; logic [31+FNS_W-1:0] period_ns_ovf_reg = '0, period_ns_ovf_next; logic [47:0] src_ts_s_capt_reg = '0; logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_capt_reg = '0; logic src_ts_step_capt_reg = '0; logic [47:0] dest_ts_s_capt_reg = '0; logic [TS_NS_W+CMP_FNS_W-1:0] dest_ts_ns_capt_reg = '0; logic [47:0] src_ts_s_sync_reg = '0; logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_sync_reg = '0; logic src_ts_step_sync_reg = '0; logic [47:0] ts_s_reg = '0, ts_s_next; logic [TS_NS_W+FNS_W-1:0] ts_ns_reg = '0, ts_ns_next; logic [TS_NS_W+FNS_W-1:0] ts_ns_inc_reg = '0, ts_ns_inc_next; logic [TS_NS_W+FNS_W+1-1:0] ts_ns_ovf_reg = '1, ts_ns_ovf_next; logic ts_step_reg = 1'b0, ts_step_next; logic pps_reg = 1'b0; logic pps_str_reg = 1'b0; logic [47:0] ts_s_pipe_reg[0:PIPELINE_OUTPUT-1]; logic [TS_NS_W+CMP_FNS_W-1:0] ts_ns_pipe_reg[0:PIPELINE_OUTPUT-1]; logic ts_step_pipe_reg[0:PIPELINE_OUTPUT-1]; logic pps_pipe_reg[0:PIPELINE_OUTPUT-1]; logic [PHASE_CNT_W-1:0] src_phase_reg = '0; logic [PHASE_ACC_W-1:0] dest_phase_reg = '0, dest_phase_next; logic [PHASE_ACC_W-1:0] dest_phase_inc_reg = '0, dest_phase_inc_next; logic src_sync_reg = 1'b0; logic src_update_reg = 1'b0; logic src_phase_sync_reg = 1'b0; logic dest_sync_reg = 1'b0; logic dest_update_reg = 1'b0, dest_update_next; logic dest_phase_sync_reg = 1'b0; logic src_sync_sync1_reg = 1'b0; logic src_sync_sync2_reg = 1'b0; logic src_sync_sync3_reg = 1'b0; logic src_phase_sync_sync1_reg = 1'b0; logic src_phase_sync_sync2_reg = 1'b0; logic src_phase_sync_sync3_reg = 1'b0; logic dest_phase_sync_sync1_reg = 1'b0; logic dest_phase_sync_sync2_reg = 1'b0; logic dest_phase_sync_sync3_reg = 1'b0; logic src_sync_sample_sync1_reg = 1'b0; logic src_sync_sample_sync2_reg = 1'b0; logic src_sync_sample_sync3_reg = 1'b0; logic dest_sync_sample_sync1_reg = 1'b0; logic dest_sync_sample_sync2_reg = 1'b0; logic dest_sync_sample_sync3_reg = 1'b0; logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0; logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0; logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0; logic sample_update_reg = 1'b0; logic sample_update_sync1_reg = 1'b0; logic sample_update_sync2_reg = 1'b0; logic sample_update_sync3_reg = 1'b0; if (PIPELINE_OUTPUT > 0) begin // pipeline (* shreg_extract = "no" *) logic [TS_W-1:0] output_ts_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) logic output_ts_step_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) logic output_pps_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) logic output_pps_str_reg[0:PIPELINE_OUTPUT-1]; assign output_ts = output_ts_reg[PIPELINE_OUTPUT-1]; assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1]; assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1]; assign output_pps_str = output_pps_str_reg[PIPELINE_OUTPUT-1]; initial begin for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin output_ts_reg[i] = 0; output_ts_step_reg[i] = 1'b0; output_pps_reg[i] = 1'b0; output_pps_str_reg[i] = 1'b0; end end always_ff @(posedge output_clk) begin if (TS_W == 96) begin output_ts_reg[0][95:48] <= ts_s_reg; output_ts_reg[0][47:46] <= 2'b00; output_ts_reg[0][45:0] <= 46'({ts_ns_reg, 16'd0} >> FNS_W); end else if (TS_W == 64) begin output_ts_reg[0] <= 64'({ts_ns_reg, 16'd0} >> FNS_W); end output_ts_step_reg[0] <= ts_step_reg; output_pps_reg[0] <= pps_reg; output_pps_str_reg[0] <= pps_str_reg; for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin output_ts_reg[i+1] <= output_ts_reg[i]; output_ts_step_reg[i+1] <= output_ts_step_reg[i]; output_pps_reg[i+1] <= output_pps_reg[i]; output_pps_str_reg[i+1] <= output_pps_str_reg[i]; end if (output_rst) begin for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin output_ts_reg[i] <= 0; output_ts_step_reg[i] <= 1'b0; output_pps_reg[i] <= 1'b0; output_pps_str_reg[i] <= 1'b0; end end end end else begin if (TS_W == 96) begin assign output_ts[95:48] = ts_s_reg; assign output_ts[47:46] = 2'b00; assign output_ts[45:0] = 46'({ts_ns_reg, 16'd0} >> FNS_W); end else if (TS_W == 64) begin assign output_ts = 64'({ts_ns_reg, 16'd0} >> FNS_W); end assign output_ts_step = ts_step_reg; assign output_pps = pps_reg; assign output_pps_str = pps_str_reg; end initial begin for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin ts_s_pipe_reg[i] = 0; ts_ns_pipe_reg[i] = 0; ts_step_pipe_reg[i] = 1'b0; pps_pipe_reg[i] = 1'b0; end end // source PTP clock capture and sync logic logic input_ts_step_reg = 1'b0; always_ff @(posedge input_clk) begin input_ts_step_reg <= input_ts_step || input_ts_step_reg; src_phase_sync_reg <= input_ts[16+8]; {src_update_reg, src_phase_reg} <= src_phase_reg+1; if (src_update_reg) begin // capture source TS if (TS_W == 96) begin src_ts_s_capt_reg <= 48'(input_ts >> 48); src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts[45:0] >> (16-CMP_FNS_W)); end else begin src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts >> (16-CMP_FNS_W)); end src_ts_step_capt_reg <= input_ts_step || input_ts_step_reg; input_ts_step_reg <= 1'b0; src_sync_reg <= !src_sync_reg; end if (input_rst) begin input_ts_step_reg <= 1'b0; src_phase_reg <= '0; src_sync_reg <= 1'b0; src_update_reg <= 1'b0; end end // CDC logic always_ff @(posedge output_clk) begin src_sync_sync1_reg <= src_sync_reg; src_sync_sync2_reg <= src_sync_sync1_reg; src_sync_sync3_reg <= src_sync_sync2_reg; src_phase_sync_sync1_reg <= src_phase_sync_reg; src_phase_sync_sync2_reg <= src_phase_sync_sync1_reg; src_phase_sync_sync3_reg <= src_phase_sync_sync2_reg; dest_phase_sync_sync1_reg <= dest_phase_sync_reg; dest_phase_sync_sync2_reg <= dest_phase_sync_sync1_reg; dest_phase_sync_sync3_reg <= dest_phase_sync_sync2_reg; end always_ff @(posedge sample_clk) begin src_sync_sample_sync1_reg <= src_sync_reg; src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg; src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg; dest_sync_sample_sync1_reg <= dest_sync_reg; dest_sync_sample_sync2_reg <= dest_sync_sample_sync1_reg; dest_sync_sample_sync3_reg <= dest_sync_sample_sync2_reg; end logic edge_1_reg = 1'b0; logic edge_2_reg = 1'b0; logic [3:0] active_reg = '0; always_ff @(posedge sample_clk) begin // phase and frequency detector if (dest_sync_sample_sync2_reg && !dest_sync_sample_sync3_reg) begin if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin edge_1_reg <= 1'b0; edge_2_reg <= 1'b0; end else begin edge_1_reg <= !edge_2_reg; edge_2_reg <= 1'b0; end end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin edge_1_reg <= 1'b0; edge_2_reg <= !edge_1_reg; end // accumulator sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg})); sample_cnt_reg <= sample_cnt_reg + 1; if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin active_reg[0] <= 1'b1; end if (sample_cnt_reg == 0) begin active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg}; sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg})); sample_acc_out_reg <= sample_acc_reg; if (active_reg != 0) begin sample_update_reg <= !sample_update_reg; end end end always_ff @(posedge output_clk) begin sample_update_sync1_reg <= sample_update_reg; sample_update_sync2_reg <= sample_update_sync1_reg; sample_update_sync3_reg <= sample_update_sync2_reg; end logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0; logic sample_acc_sync_valid_reg = '0; logic [PHASE_ACC_W-1:0] dest_err_int_reg = '0, dest_err_int_next; logic [1:0] dest_ovf; logic [DEST_SYNC_LOCK_W-1:0] dest_sync_lock_count_reg = '0, dest_sync_lock_count_next; logic dest_sync_locked_reg = 1'b0, dest_sync_locked_next; always_comb begin {dest_update_next, dest_phase_next} = dest_phase_reg + dest_phase_inc_reg; dest_phase_inc_next = dest_phase_inc_reg; dest_err_int_next = dest_err_int_reg; dest_sync_lock_count_next = dest_sync_lock_count_reg; dest_sync_locked_next = dest_sync_locked_reg; dest_ovf = 0; if (sample_acc_sync_valid_reg) begin // updated sampled dest_phase error // time integral of error if (dest_sync_locked_reg) begin {dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg)); end else begin {dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**6); end // saturate if (dest_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero dest_err_int_next = '0; end else if (dest_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 dest_err_int_next = '1; end // compute output if (dest_sync_locked_reg) begin {dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4); end else begin {dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**10); end // saturate if (dest_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero dest_phase_inc_next = '0; end else if (dest_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 dest_phase_inc_next = '1; end // locked status if ($signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:2]) == 0 || $signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:1]) == -1) begin if (&dest_sync_lock_count_reg) begin dest_sync_locked_next = 1'b1; end else begin dest_sync_lock_count_next = dest_sync_lock_count_reg + 1; end end else begin dest_sync_lock_count_next = '0; dest_sync_locked_next = 1'b0; end end end logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0; logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0; logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0; logic phase_err_out_valid_reg = '0; logic phase_edge_1_reg = 1'b0; logic phase_edge_2_reg = 1'b0; logic [5:0] phase_active_reg = '0; logic ts_sync_valid_reg = 1'b0; always_ff @(posedge output_clk) begin dest_phase_reg <= dest_phase_next; dest_phase_inc_reg <= dest_phase_inc_next; dest_update_reg <= dest_update_next; sample_acc_sync_valid_reg <= 1'b0; if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin // latch in synchronized counts from phase detector sample_acc_sync_reg <= sample_acc_out_reg; sample_acc_sync_valid_reg <= 1'b1; end if (PIPELINE_OUTPUT > 0) begin dest_phase_sync_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1][8+FNS_W]; end else begin dest_phase_sync_reg <= ts_ns_reg[8+FNS_W]; end // phase and frequency detector if (dest_phase_sync_sync2_reg && !dest_phase_sync_sync3_reg) begin if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin phase_edge_1_reg <= 1'b0; phase_edge_2_reg <= 1'b0; end else begin phase_edge_1_reg <= !phase_edge_2_reg; phase_edge_2_reg <= 1'b0; end end else if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin phase_edge_1_reg <= 1'b0; phase_edge_2_reg <= !phase_edge_1_reg; end // accumulator phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg})); phase_err_cnt_reg <= phase_err_cnt_reg + 1; if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin phase_active_reg[0] <= 1'b1; end phase_err_out_valid_reg <= 1'b0; if (phase_err_cnt_reg == 0) begin phase_active_reg <= {phase_active_reg[4:0], src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg}; phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg})); phase_err_out_reg <= phase_err_acc_reg; if (phase_active_reg != 0) begin phase_err_out_valid_reg <= 1'b1; end end if (dest_update_reg) begin // capture local TS if (PIPELINE_OUTPUT > 0) begin dest_ts_s_capt_reg <= ts_s_pipe_reg[PIPELINE_OUTPUT-1]; dest_ts_ns_capt_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1]; end else begin dest_ts_s_capt_reg <= ts_s_reg; dest_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-CMP_FNS_W); end dest_sync_reg <= !dest_sync_reg; end ts_sync_valid_reg <= 1'b0; if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin // store captured source TS if (TS_W == 96) begin src_ts_s_sync_reg <= src_ts_s_capt_reg; end src_ts_ns_sync_reg <= src_ts_ns_capt_reg; src_ts_step_sync_reg <= src_ts_step_capt_reg; ts_sync_valid_reg <= 1'b1; end dest_err_int_reg <= dest_err_int_next; dest_sync_lock_count_reg <= dest_sync_lock_count_next; dest_sync_locked_reg <= dest_sync_locked_next; if (output_rst) begin dest_phase_reg <= '0; dest_phase_inc_reg <= '0; dest_sync_reg <= 1'b0; dest_update_reg <= 1'b0; dest_err_int_reg <= '0; dest_sync_lock_count_reg <= '0; dest_sync_locked_reg <= 1'b0; ts_sync_valid_reg <= 1'b0; end end logic ts_diff_reg = 1'b0, ts_diff_next; logic ts_diff_valid_reg = 1'b0, ts_diff_valid_next; logic [3:0] mismatch_cnt_reg = '0, mismatch_cnt_next; logic load_ts_reg = 1'b0, load_ts_next; logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next; logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next; logic [1:0] ptp_ovf; logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next; logic freq_locked_reg = 1'b0, freq_locked_next; logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next; logic ptp_locked_reg = 1'b0, ptp_locked_next; logic gain_sel_reg = '0, gain_sel_next; assign locked = ptp_locked_reg && freq_locked_reg && dest_sync_locked_reg; always_comb begin period_ns_next = period_ns_reg; ts_s_next = ts_s_reg; ts_ns_next = ts_ns_reg; ts_ns_inc_next = ts_ns_inc_reg; ts_ns_ovf_next = ts_ns_ovf_reg; ts_step_next = '0; ts_diff_next = 1'b0; ts_diff_valid_next = 1'b0; mismatch_cnt_next = mismatch_cnt_reg; load_ts_next = load_ts_reg; ts_ns_diff_next = ts_ns_diff_reg; time_err_int_next = time_err_int_reg; freq_lock_count_next = freq_lock_count_reg; freq_locked_next = freq_locked_reg; ptp_lock_count_next = ptp_lock_count_reg; ptp_locked_next = ptp_locked_reg; gain_sel_next = gain_sel_reg; // PTP clock period_ns_delay_next = period_ns_reg; if (TS_W == 96) begin // 96 bit timestamp ts_ns_inc_next = ts_ns_inc_reg + (TS_NS_W+FNS_W)'(period_ns_delay_reg); ts_ns_ovf_next = ts_ns_inc_reg - (TS_NS_W+FNS_W)'(period_ns_ovf_reg); ts_ns_next = ts_ns_inc_reg; period_ns_ovf_next = (31+FNS_W)'({NS_PER_S, {FNS_W{1'b0}}}) - (31+FNS_W)'(period_ns_reg); if (!ts_ns_ovf_reg[30+FNS_W]) begin // if the overflow lookahead did not borrow, one second has elapsed // increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set ts_ns_inc_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0] + (TS_NS_W+FNS_W)'(period_ns_delay_reg); ts_ns_ovf_next[30+FNS_W] = 1'b1; ts_ns_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0]; ts_s_next = ts_s_reg + 1; end end else if (TS_W == 64) begin // 64 bit timestamp ts_ns_next = ts_ns_reg + (TS_NS_W+FNS_W)'(period_ns_reg); end if (ts_sync_valid_reg) begin // Read new value if (TS_W == 96) begin if (src_ts_step_sync_reg || load_ts_reg) begin // input stepped load_ts_next = 1'b0; ts_s_next = src_ts_s_sync_reg; ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W]; ts_ns_inc_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W]; ts_ns_ovf_next[30+FNS_W] = 1'b1; ts_step_next = 1; end else begin // input did not step load_ts_next = 1'b0; ts_diff_valid_next = freq_locked_reg; end // compute difference ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg); ts_diff_next = src_ts_s_sync_reg != dest_ts_s_capt_reg || src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W]; end else if (TS_W == 64) begin if (src_ts_step_sync_reg || load_ts_reg) begin // input stepped load_ts_next = 1'b0; ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W]; ts_step_next = 1; end else begin // input did not step load_ts_next = 1'b0; ts_diff_valid_next = freq_locked_reg; end // compute difference ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg); ts_diff_next = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W]; end end if (ts_diff_valid_reg) begin if (ts_diff_reg) begin if (&mismatch_cnt_reg) begin load_ts_next = 1'b1; mismatch_cnt_next = '0; end else begin mismatch_cnt_next = mismatch_cnt_reg + 1; end end else begin mismatch_cnt_next = '0; end end if (phase_err_out_valid_reg) begin // coarse phase/frequency lock of PTP clock if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin if (freq_lock_count_reg != 0) begin freq_lock_count_next = freq_lock_count_reg - 1; end else begin freq_locked_next = 1'b0; end end else begin if (&freq_lock_count_reg) begin freq_locked_next = 1'b1; end else begin freq_lock_count_next = freq_lock_count_reg + 1; end end if (!freq_locked_reg) begin ts_ns_diff_next = $signed(phase_err_out_reg) * 8 * 2**CMP_FNS_W; ts_diff_valid_next = 1'b1; end end if (ts_diff_valid_reg) begin // PI control // gain scheduling casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5]) 5'b01zzz: gain_sel_next = 1'b1; 5'b001zz: gain_sel_next = 1'b1; 5'b0001z: gain_sel_next = 1'b1; 5'b00001: gain_sel_next = 1'b1; 5'b00000: gain_sel_next = 1'b0; 5'b11111: gain_sel_next = 1'b0; 5'b11110: gain_sel_next = 1'b1; 5'b1110z: gain_sel_next = 1'b1; 5'b110zz: gain_sel_next = 1'b1; 5'b10zzz: gain_sel_next = 1'b1; default: gain_sel_next = 1'b0; endcase // time integral of error case (gain_sel_reg) 1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4); 1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2); endcase // saturate if (ptp_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero time_err_int_next = '0; end else if (ptp_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 time_err_int_next = '1; end // compute output case (gain_sel_reg) 1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2); 1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**6); endcase // saturate if (ptp_ovf[1]) begin // sign bit set indicating underflow across zero; saturate to zero period_ns_next = '0; end else if (ptp_ovf[0]) begin // sign bit clear but carry bit set indicating overflow; saturate to all 1 period_ns_next = '1; end // adjust period if integrator is saturated if (time_err_int_reg == 0) begin period_ns_next = '0; end else if (~time_err_int_reg == 0) begin period_ns_next = '1; end // locked status if (!freq_locked_reg) begin ptp_lock_count_next = 0; ptp_locked_next = 1'b0; end else if (gain_sel_reg == 1'b0) begin if (&ptp_lock_count_reg) begin ptp_locked_next = 1'b1; end else begin ptp_lock_count_next = ptp_lock_count_reg + 1; end end else begin if (ptp_lock_count_reg != 0) begin ptp_lock_count_next = ptp_lock_count_reg - 1; end else begin ptp_locked_next = 1'b0; end end end end always_ff @(posedge output_clk) begin period_ns_reg <= period_ns_next; period_ns_delay_reg <= period_ns_delay_next; period_ns_ovf_reg <= period_ns_ovf_next; ts_s_reg <= ts_s_next; ts_ns_reg <= ts_ns_next; ts_ns_inc_reg <= ts_ns_inc_next; ts_ns_ovf_reg <= ts_ns_ovf_next; ts_step_reg <= ts_step_next; ts_diff_reg <= ts_diff_next; ts_diff_valid_reg <= ts_diff_valid_next; mismatch_cnt_reg <= mismatch_cnt_next; load_ts_reg <= load_ts_next; ts_ns_diff_reg <= ts_ns_diff_next; time_err_int_reg <= time_err_int_next; freq_lock_count_reg <= freq_lock_count_next; freq_locked_reg <= freq_locked_next; ptp_lock_count_reg <= ptp_lock_count_next; ptp_locked_reg <= ptp_locked_next; gain_sel_reg <= gain_sel_next; // PPS output pps_reg <= 1'b0; if (TS_W == 96) begin if (ts_ns_reg[29]) begin pps_str_reg <= 1'b0; end if (!ts_ns_ovf_reg[30+FNS_W]) begin pps_reg <= 1'b1; pps_str_reg <= 1'b1; end end // pipeline if (PIPELINE_OUTPUT > 0) begin ts_s_pipe_reg[0] <= ts_s_reg; ts_ns_pipe_reg[0] <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-TS_FNS_W); ts_step_pipe_reg[0] <= ts_step_reg; pps_pipe_reg[0] <= pps_reg; for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin ts_s_pipe_reg[i+1] <= ts_s_pipe_reg[i]; ts_ns_pipe_reg[i+1] <= ts_ns_pipe_reg[i]; ts_step_pipe_reg[i+1] <= ts_step_pipe_reg[i]; pps_pipe_reg[i+1] <= pps_pipe_reg[i]; end end if (output_rst) begin period_ns_reg <= '0; ts_s_reg <= '0; ts_ns_reg <= '0; ts_ns_inc_reg <= '0; ts_ns_ovf_reg[30+FNS_W] <= 1'b1; ts_step_reg <= '0; pps_reg <= '0; ts_diff_reg <= 1'b0; ts_diff_valid_reg <= 1'b0; mismatch_cnt_reg <= '0; load_ts_reg <= '0; time_err_int_reg <= '0; freq_lock_count_reg <= '0; freq_locked_reg <= 1'b0; ptp_lock_count_reg <= '0; ptp_locked_reg <= 1'b0; for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin ts_s_pipe_reg[i] <= '0; ts_ns_pipe_reg[i] <= '0; ts_step_pipe_reg[i] <= 1'b0; pps_pipe_reg[i] <= 1'b0; end end end endmodule `resetall