// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 width adapter */ module taxi_axi_adapter_rd # ( // When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible parameter logic CONVERT_BURST = 1'b1, // When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible parameter logic CONVERT_NARROW_BURST = 1'b0 ) ( input wire logic clk, input wire logic rst, /* * AXI4 slave interface */ taxi_axi_if.rd_slv s_axi_rd, /* * AXI4 master interface */ taxi_axi_if.rd_mst m_axi_rd ); // extract parameters localparam S_DATA_W = s_axi_rd.DATA_W; localparam ADDR_W = s_axi_rd.ADDR_W; localparam CL_ADDR_W = $clog2(ADDR_W); localparam S_STRB_W = s_axi_rd.STRB_W; localparam ID_W = s_axi_rd.ID_W; localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axi_rd.ARUSER_EN; localparam ARUSER_W = s_axi_rd.ARUSER_W; localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axi_rd.RUSER_EN; localparam RUSER_W = s_axi_rd.RUSER_W; localparam M_DATA_W = m_axi_rd.DATA_W; localparam M_STRB_W = m_axi_rd.STRB_W; localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W); localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W); localparam S_BYTE_LANES = S_STRB_W; localparam M_BYTE_LANES = M_STRB_W; localparam S_BYTE_SIZE = S_DATA_W/S_BYTE_LANES; localparam M_BYTE_SIZE = M_DATA_W/M_BYTE_LANES; localparam logic [2:0] S_BURST_SIZE = 3'($clog2(S_STRB_W)); localparam logic [2:0] M_BURST_SIZE = 3'($clog2(M_STRB_W)); // check configuration if (S_BYTE_SIZE * S_STRB_W != S_DATA_W) $fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)"); if (M_BYTE_SIZE * M_STRB_W != M_DATA_W) $fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)"); if (S_BYTE_SIZE != M_BYTE_SIZE) $fatal(0, "Error: byte size mismatch (instance %m)"); if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES) $fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)"); if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES) $fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)"); if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass // same width; bypass assign m_axi_rd.arid = s_axi_rd.arid; assign m_axi_rd.araddr = s_axi_rd.araddr; assign m_axi_rd.arlen = s_axi_rd.arlen; assign m_axi_rd.arsize = s_axi_rd.arsize; assign m_axi_rd.arburst = s_axi_rd.arburst; assign m_axi_rd.arlock = s_axi_rd.arlock; assign m_axi_rd.arcache = s_axi_rd.arcache; assign m_axi_rd.arprot = s_axi_rd.arprot; assign m_axi_rd.arqos = s_axi_rd.arqos; assign m_axi_rd.arregion = s_axi_rd.arregion; assign m_axi_rd.aruser = ARUSER_EN ? s_axi_rd.aruser : '0; assign m_axi_rd.arvalid = s_axi_rd.arvalid; assign s_axi_rd.arready = m_axi_rd.arready; assign s_axi_rd.rid = m_axi_rd.rid; assign s_axi_rd.rdata = m_axi_rd.rdata; assign s_axi_rd.rresp = m_axi_rd.rresp; assign s_axi_rd.rlast = m_axi_rd.rlast; assign s_axi_rd.ruser = RUSER_EN ? m_axi_rd.ruser : '0; assign s_axi_rd.rvalid = m_axi_rd.rvalid; assign m_axi_rd.rready = s_axi_rd.rready; end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize // output is wider; upsize // output bus is wider localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES; localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W; localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES); localparam CL_SEG_COUNT = $clog2(SEG_COUNT); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [1:0] STATE_IDLE = 2'd0, STATE_DATA = 2'd1, STATE_DATA_READ = 2'd2, STATE_DATA_SPLIT = 2'd3; logic [1:0] state_reg = STATE_IDLE, state_next; logic [ID_W-1:0] id_reg = '0, id_next; logic [ADDR_W-1:0] addr_reg = '0, addr_next; logic [DATA_W-1:0] data_reg = '0, data_next; logic [1:0] resp_reg = '0, resp_next; logic [RUSER_W-1:0] ruser_reg = '0, ruser_next; logic [7:0] burst_reg = '0, burst_next; logic [2:0] burst_size_reg = '0, burst_size_next; logic [7:0] master_burst_reg = '0, master_burst_next; logic [2:0] master_burst_size_reg = '0, master_burst_size_next; logic s_axi_arready_reg = 1'b0, s_axi_arready_next; logic [ID_W-1:0] m_axi_arid_reg = '0, m_axi_arid_next; logic [ADDR_W-1:0] m_axi_araddr_reg = '0, m_axi_araddr_next; logic [7:0] m_axi_arlen_reg = '0, m_axi_arlen_next; logic [2:0] m_axi_arsize_reg = '0, m_axi_arsize_next; logic [1:0] m_axi_arburst_reg = '0, m_axi_arburst_next; logic m_axi_arlock_reg = '0, m_axi_arlock_next; logic [3:0] m_axi_arcache_reg = '0, m_axi_arcache_next; logic [2:0] m_axi_arprot_reg = '0, m_axi_arprot_next; logic [3:0] m_axi_arqos_reg = '0, m_axi_arqos_next; logic [3:0] m_axi_arregion_reg = '0, m_axi_arregion_next; logic [ARUSER_W-1:0] m_axi_aruser_reg = '0, m_axi_aruser_next; logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; logic m_axi_rready_reg = 1'b0, m_axi_rready_next; // internal datapath logic [ID_W-1:0] s_axi_rid_int; logic [S_DATA_W-1:0] s_axi_rdata_int; logic [1:0] s_axi_rresp_int; logic s_axi_rlast_int; logic [RUSER_W-1:0] s_axi_ruser_int; logic s_axi_rvalid_int; logic s_axi_rready_int_reg = 1'b0; wire s_axi_rready_int_early; assign s_axi_rd.arready = s_axi_arready_reg; assign m_axi_rd.arid = '0; assign m_axi_rd.araddr = m_axi_araddr_reg; assign m_axi_rd.arlen = m_axi_arlen_reg; assign m_axi_rd.arsize = m_axi_arsize_reg; assign m_axi_rd.arburst = m_axi_arburst_reg; assign m_axi_rd.arlock = m_axi_arlock_reg; assign m_axi_rd.arcache = m_axi_arcache_reg; assign m_axi_rd.arprot = m_axi_arprot_reg; assign m_axi_rd.arqos = m_axi_arqos_reg; assign m_axi_rd.arregion = m_axi_arregion_reg; assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0; assign m_axi_rd.arvalid = m_axi_arvalid_reg; assign m_axi_rd.rready = m_axi_rready_reg; always_comb begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; resp_next = resp_reg; ruser_next = ruser_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_next = master_burst_reg; master_burst_size_next = master_burst_size_reg; s_axi_arready_next = 1'b0; m_axi_arid_next = m_axi_arid_reg; m_axi_araddr_next = m_axi_araddr_reg; m_axi_arlen_next = m_axi_arlen_reg; m_axi_arsize_next = m_axi_arsize_reg; m_axi_arburst_next = m_axi_arburst_reg; m_axi_arlock_next = m_axi_arlock_reg; m_axi_arcache_next = m_axi_arcache_reg; m_axi_arprot_next = m_axi_arprot_reg; m_axi_arqos_next = m_axi_arqos_reg; m_axi_arregion_next = m_axi_arregion_reg; m_axi_aruser_next = m_axi_aruser_reg; m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_rd.arready; m_axi_rready_next = 1'b0; s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W]; s_axi_rresp_int = m_axi_rd.rresp; s_axi_rlast_int = m_axi_rd.rlast; s_axi_ruser_int = m_axi_rd.ruser; s_axi_rvalid_int = 1'b0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_arready_next = !m_axi_rd.arvalid; if (s_axi_rd.arready && s_axi_rd.arvalid) begin s_axi_arready_next = 1'b0; id_next = s_axi_rd.arid; m_axi_arid_next = s_axi_rd.arid; m_axi_araddr_next = s_axi_rd.araddr; addr_next = s_axi_rd.araddr; burst_next = s_axi_rd.arlen; burst_size_next = s_axi_rd.arsize; if (CONVERT_BURST && s_axi_rd.arcache[1] && (CONVERT_NARROW_BURST || s_axi_rd.arsize == S_BURST_SIZE)) begin // split reads // require CONVERT_BURST and arcache[1] set master_burst_size_next = M_BURST_SIZE; if (CONVERT_NARROW_BURST) begin m_axi_arlen_next = 8'((({8'd0, s_axi_rd.arlen} << s_axi_rd.arsize) + 16'(s_axi_rd.araddr[M_ADDR_BIT_OFFSET-1:0])) >> M_BURST_SIZE); end else begin m_axi_arlen_next = (s_axi_rd.arlen + 8'(s_axi_rd.araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET])) >> CL_SEG_COUNT; end m_axi_arsize_next = M_BURST_SIZE; state_next = STATE_DATA_READ; end else begin // output narrow burst master_burst_size_next = s_axi_rd.arsize; m_axi_arlen_next = s_axi_rd.arlen; m_axi_arsize_next = s_axi_rd.arsize; state_next = STATE_DATA; end m_axi_arburst_next = s_axi_rd.arburst; m_axi_arlock_next = s_axi_rd.arlock; m_axi_arcache_next = s_axi_rd.arcache; m_axi_arprot_next = s_axi_rd.arprot; m_axi_arqos_next = s_axi_rd.arqos; m_axi_arregion_next = s_axi_rd.arregion; m_axi_aruser_next = s_axi_rd.aruser; m_axi_arvalid_next = 1'b1; m_axi_rready_next = s_axi_rready_int_early; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rd.rready && m_axi_rd.rvalid) begin s_axi_rid_int = id_reg; s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W]; s_axi_rresp_int = m_axi_rd.rresp; s_axi_rlast_int = m_axi_rd.rlast; s_axi_ruser_int = m_axi_rd.ruser; s_axi_rvalid_int = 1'b1; addr_next = addr_reg + (1 << burst_size_reg); if (m_axi_rd.rlast) begin m_axi_rready_next = 1'b0; s_axi_arready_next = !m_axi_rd.arvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end STATE_DATA_READ: begin m_axi_rready_next = s_axi_rready_int_early; if (m_axi_rd.rready && m_axi_rd.rvalid) begin s_axi_rid_int = id_reg; data_next = m_axi_rd.rdata; resp_next = m_axi_rd.rresp; ruser_next = m_axi_rd.ruser; s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W]; s_axi_rresp_int = m_axi_rd.rresp; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_rd.ruser; s_axi_rvalid_int = 1'b1; burst_next = burst_reg - 1; addr_next = addr_reg + (1 << burst_size_reg); if (burst_reg == 0) begin m_axi_rready_next = 1'b0; s_axi_arready_next = !m_axi_rd.arvalid; s_axi_rlast_int = 1'b1; state_next = STATE_IDLE; end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin state_next = STATE_DATA_READ; end else begin m_axi_rready_next = 1'b0; state_next = STATE_DATA_SPLIT; end end else begin state_next = STATE_DATA_READ; end end STATE_DATA_SPLIT: begin m_axi_rready_next = 1'b0; if (s_axi_rready_int_reg) begin s_axi_rid_int = id_reg; s_axi_rdata_int = data_reg[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W]; s_axi_rresp_int = resp_reg; s_axi_rlast_int = 1'b0; s_axi_ruser_int = ruser_reg; s_axi_rvalid_int = 1'b1; burst_next = burst_reg - 1; addr_next = addr_reg + (1 << burst_size_reg); if (burst_reg == 0) begin s_axi_arready_next = !m_axi_rd.arvalid; s_axi_rlast_int = 1'b1; state_next = STATE_IDLE; end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin m_axi_rready_next = s_axi_rready_int_early; state_next = STATE_DATA_READ; end else begin state_next = STATE_DATA_SPLIT; end end else begin state_next = STATE_DATA_SPLIT; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; resp_reg <= resp_next; ruser_reg <= ruser_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_reg <= master_burst_next; master_burst_size_reg <= master_burst_size_next; s_axi_arready_reg <= s_axi_arready_next; m_axi_arid_reg <= m_axi_arid_next; m_axi_araddr_reg <= m_axi_araddr_next; m_axi_arlen_reg <= m_axi_arlen_next; m_axi_arsize_reg <= m_axi_arsize_next; m_axi_arburst_reg <= m_axi_arburst_next; m_axi_arlock_reg <= m_axi_arlock_next; m_axi_arcache_reg <= m_axi_arcache_next; m_axi_arprot_reg <= m_axi_arprot_next; m_axi_arqos_reg <= m_axi_arqos_next; m_axi_arregion_reg <= m_axi_arregion_next; m_axi_aruser_reg <= m_axi_aruser_next; m_axi_arvalid_reg <= m_axi_arvalid_next; m_axi_rready_reg <= m_axi_rready_next; if (rst) begin state_reg <= STATE_IDLE; s_axi_arready_reg <= 1'b0; m_axi_arvalid_reg <= 1'b0; m_axi_rready_reg <= 1'b0; end end // output datapath logic logic [ID_W-1:0] s_axi_rid_reg = '0; logic [S_DATA_W-1:0] s_axi_rdata_reg = '0; logic [1:0] s_axi_rresp_reg = 2'd0; logic s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] s_axi_ruser_reg = 1'b0; logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; logic [ID_W-1:0] temp_s_axi_rid_reg = '0; logic [S_DATA_W-1:0] temp_s_axi_rdata_reg = '0; logic [1:0] temp_s_axi_rresp_reg = 2'd0; logic temp_s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] temp_s_axi_ruser_reg = 1'b0; logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next; // datapath control logic store_axi_r_int_to_output; logic store_axi_r_int_to_temp; logic store_axi_r_temp_to_output; assign s_axi_rd.rid = s_axi_rid_reg; assign s_axi_rd.rdata = s_axi_rdata_reg; assign s_axi_rd.rresp = s_axi_rresp_reg; assign s_axi_rd.rlast = s_axi_rlast_reg; assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0; assign s_axi_rd.rvalid = s_axi_rvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign s_axi_rready_int_early = s_axi_rd.rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int)); always_comb begin // transfer sink ready state to source s_axi_rvalid_next = s_axi_rvalid_reg; temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg; store_axi_r_int_to_output = 1'b0; store_axi_r_int_to_temp = 1'b0; store_axi_r_temp_to_output = 1'b0; if (s_axi_rready_int_reg) begin // input is ready if (s_axi_rd.rready | ~s_axi_rvalid_reg) begin // output is ready or currently not valid, transfer data to output s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_temp = 1'b1; end end else if (s_axi_rd.rready) begin // input is not ready, but output is ready s_axi_rvalid_next = temp_s_axi_rvalid_reg; temp_s_axi_rvalid_next = 1'b0; store_axi_r_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin if (rst) begin s_axi_rvalid_reg <= 1'b0; s_axi_rready_int_reg <= 1'b0; temp_s_axi_rvalid_reg <= 1'b0; end else begin s_axi_rvalid_reg <= s_axi_rvalid_next; s_axi_rready_int_reg <= s_axi_rready_int_early; temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next; end // datapath if (store_axi_r_int_to_output) begin s_axi_rid_reg <= s_axi_rid_int; s_axi_rdata_reg <= s_axi_rdata_int; s_axi_rresp_reg <= s_axi_rresp_int; s_axi_rlast_reg <= s_axi_rlast_int; s_axi_ruser_reg <= s_axi_ruser_int; end else if (store_axi_r_temp_to_output) begin s_axi_rid_reg <= temp_s_axi_rid_reg; s_axi_rdata_reg <= temp_s_axi_rdata_reg; s_axi_rresp_reg <= temp_s_axi_rresp_reg; s_axi_rlast_reg <= temp_s_axi_rlast_reg; s_axi_ruser_reg <= temp_s_axi_ruser_reg; end if (store_axi_r_int_to_temp) begin temp_s_axi_rid_reg <= s_axi_rid_int; temp_s_axi_rdata_reg <= s_axi_rdata_int; temp_s_axi_rresp_reg <= s_axi_rresp_int; temp_s_axi_rlast_reg <= s_axi_rlast_int; temp_s_axi_ruser_reg <= s_axi_ruser_int; end end end else begin : downsize // output is narrower; downsize // output bus is wider localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES; localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W; localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [0:0] STATE_IDLE = 1'd0, STATE_DATA = 1'd1; logic [0:0] state_reg = STATE_IDLE, state_next; logic [ID_W-1:0] id_reg = '0, id_next; logic [ADDR_W-1:0] addr_reg = '0, addr_next; logic [DATA_W-1:0] data_reg = '0, data_next; logic [1:0] resp_reg = '0, resp_next; logic [RUSER_W-1:0] ruser_reg = '0, ruser_next; logic [7:0] burst_reg = '0, burst_next; logic [2:0] burst_size_reg = '0, burst_size_next; logic [7:0] master_burst_reg = '0, master_burst_next; logic [2:0] master_burst_size_reg = '0, master_burst_size_next; logic s_axi_arready_reg = 1'b0, s_axi_arready_next; logic [ID_W-1:0] m_axi_arid_reg = '0, m_axi_arid_next; logic [ADDR_W-1:0] m_axi_araddr_reg = '0, m_axi_araddr_next; logic [7:0] m_axi_arlen_reg = '0, m_axi_arlen_next; logic [2:0] m_axi_arsize_reg = '0, m_axi_arsize_next; logic [1:0] m_axi_arburst_reg = '0, m_axi_arburst_next; logic m_axi_arlock_reg = '0, m_axi_arlock_next; logic [3:0] m_axi_arcache_reg = '0, m_axi_arcache_next; logic [2:0] m_axi_arprot_reg = '0, m_axi_arprot_next; logic [3:0] m_axi_arqos_reg = '0, m_axi_arqos_next; logic [3:0] m_axi_arregion_reg = '0, m_axi_arregion_next; logic [ARUSER_W-1:0] m_axi_aruser_reg = '0, m_axi_aruser_next; logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; logic m_axi_rready_reg = 1'b0, m_axi_rready_next; // internal datapath logic [ID_W-1:0] s_axi_rid_int; logic [S_DATA_W-1:0] s_axi_rdata_int; logic [1:0] s_axi_rresp_int; logic s_axi_rlast_int; logic [RUSER_W-1:0] s_axi_ruser_int; logic s_axi_rvalid_int; logic s_axi_rready_int_reg = 1'b0; wire s_axi_rready_int_early; assign s_axi_rd.arready = s_axi_arready_reg; assign m_axi_rd.arid = '0; assign m_axi_rd.araddr = m_axi_araddr_reg; assign m_axi_rd.arlen = m_axi_arlen_reg; assign m_axi_rd.arsize = m_axi_arsize_reg; assign m_axi_rd.arburst = m_axi_arburst_reg; assign m_axi_rd.arlock = m_axi_arlock_reg; assign m_axi_rd.arcache = m_axi_arcache_reg; assign m_axi_rd.arprot = m_axi_arprot_reg; assign m_axi_rd.arqos = m_axi_arqos_reg; assign m_axi_rd.arregion = m_axi_arregion_reg; assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0; assign m_axi_rd.arvalid = m_axi_arvalid_reg; assign m_axi_rd.rready = m_axi_rready_reg; always_comb begin state_next = STATE_IDLE; id_next = id_reg; addr_next = addr_reg; data_next = data_reg; resp_next = resp_reg; ruser_next = ruser_reg; burst_next = burst_reg; burst_size_next = burst_size_reg; master_burst_next = master_burst_reg; master_burst_size_next = master_burst_size_reg; s_axi_arready_next = 1'b0; m_axi_arid_next = m_axi_arid_reg; m_axi_araddr_next = m_axi_araddr_reg; m_axi_arlen_next = m_axi_arlen_reg; m_axi_arsize_next = m_axi_arsize_reg; m_axi_arburst_next = m_axi_arburst_reg; m_axi_arlock_next = m_axi_arlock_reg; m_axi_arcache_next = m_axi_arcache_reg; m_axi_arprot_next = m_axi_arprot_reg; m_axi_arqos_next = m_axi_arqos_reg; m_axi_arregion_next = m_axi_arregion_reg; m_axi_aruser_next = m_axi_aruser_reg; m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_rd.arready; m_axi_rready_next = 1'b0; // master output is narrower; merge reads and possibly split burst s_axi_rid_int = id_reg; s_axi_rdata_int = data_reg; s_axi_rresp_int = resp_reg; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_rd.ruser; s_axi_rvalid_int = 1'b0; case (state_reg) STATE_IDLE: begin // idle state; wait for new burst s_axi_arready_next = !m_axi_rd.arvalid; resp_next = 2'd0; if (s_axi_rd.arready && s_axi_rd.arvalid) begin s_axi_arready_next = 1'b0; id_next = s_axi_rd.arid; m_axi_arid_next = s_axi_rd.arid; m_axi_araddr_next = s_axi_rd.araddr; addr_next = s_axi_rd.araddr; burst_next = s_axi_rd.arlen; burst_size_next = s_axi_rd.arsize; if (s_axi_rd.arsize > M_BURST_SIZE) begin // need to adjust burst size if (s_axi_rd.arlen >> (8+M_BURST_SIZE-s_axi_rd.arsize) != 0) begin // limit burst length to max master_burst_next = 8'(8'd255 << 3'(s_axi_rd.arsize-M_BURST_SIZE)) | 8'((8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> M_BURST_SIZE); end else begin master_burst_next = 8'(s_axi_rd.arlen << 3'(s_axi_rd.arsize-M_BURST_SIZE)) | 8'((8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> M_BURST_SIZE); end master_burst_size_next = M_BURST_SIZE; m_axi_arlen_next = master_burst_next; m_axi_arsize_next = master_burst_size_next; end else begin // pass through narrow (enough) burst master_burst_next = s_axi_rd.arlen; master_burst_size_next = s_axi_rd.arsize; m_axi_arlen_next = s_axi_rd.arlen; m_axi_arsize_next = s_axi_rd.arsize; end m_axi_arburst_next = s_axi_rd.arburst; m_axi_arlock_next = s_axi_rd.arlock; m_axi_arcache_next = s_axi_rd.arcache; m_axi_arprot_next = s_axi_rd.arprot; m_axi_arqos_next = s_axi_rd.arqos; m_axi_arregion_next = s_axi_rd.arregion; m_axi_aruser_next = s_axi_rd.aruser; m_axi_arvalid_next = 1'b1; m_axi_rready_next = 1'b0; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axi_rready_next = s_axi_rready_int_early && !m_axi_rd.arvalid; if (m_axi_rd.rready && m_axi_rd.rvalid) begin data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = m_axi_rd.rdata; if (m_axi_rd.rresp != 0) begin resp_next = m_axi_rd.rresp; end s_axi_rid_int = id_reg; s_axi_rdata_int = data_next; s_axi_rresp_int = resp_next; s_axi_rlast_int = 1'b0; s_axi_ruser_int = m_axi_rd.ruser; s_axi_rvalid_int = 1'b0; master_burst_next = master_burst_reg - 1; addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg); m_axi_araddr_next = addr_next; if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin data_next = '0; burst_next = burst_reg - 1; s_axi_rvalid_int = 1'b1; end if (master_burst_reg == 0) begin if (burst_next >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin // limit burst length to max master_burst_next = 8'd255; end else begin master_burst_next = (burst_next << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE); end m_axi_arlen_next = master_burst_next; if (burst_reg == 0) begin m_axi_rready_next = 1'b0; s_axi_rlast_int = 1'b1; s_axi_rvalid_int = 1'b1; s_axi_arready_next = !m_axi_rd.arvalid; state_next = STATE_IDLE; end else begin // start new burst m_axi_arvalid_next = 1'b1; m_axi_rready_next = 1'b0; state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; id_reg <= id_next; addr_reg <= addr_next; data_reg <= data_next; resp_reg <= resp_next; ruser_reg <= ruser_next; burst_reg <= burst_next; burst_size_reg <= burst_size_next; master_burst_reg <= master_burst_next; master_burst_size_reg <= master_burst_size_next; s_axi_arready_reg <= s_axi_arready_next; m_axi_arid_reg <= m_axi_arid_next; m_axi_araddr_reg <= m_axi_araddr_next; m_axi_arlen_reg <= m_axi_arlen_next; m_axi_arsize_reg <= m_axi_arsize_next; m_axi_arburst_reg <= m_axi_arburst_next; m_axi_arlock_reg <= m_axi_arlock_next; m_axi_arcache_reg <= m_axi_arcache_next; m_axi_arprot_reg <= m_axi_arprot_next; m_axi_arqos_reg <= m_axi_arqos_next; m_axi_arregion_reg <= m_axi_arregion_next; m_axi_aruser_reg <= m_axi_aruser_next; m_axi_arvalid_reg <= m_axi_arvalid_next; m_axi_rready_reg <= m_axi_rready_next; if (rst) begin state_reg <= STATE_IDLE; s_axi_arready_reg <= 1'b0; m_axi_arvalid_reg <= 1'b0; m_axi_rready_reg <= 1'b0; end end // output datapath logic logic [ID_W-1:0] s_axi_rid_reg = '0; logic [S_DATA_W-1:0] s_axi_rdata_reg = '0; logic [1:0] s_axi_rresp_reg = 2'd0; logic s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] s_axi_ruser_reg = 1'b0; logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; logic [ID_W-1:0] temp_s_axi_rid_reg = '0; logic [S_DATA_W-1:0] temp_s_axi_rdata_reg = '0; logic [1:0] temp_s_axi_rresp_reg = 2'd0; logic temp_s_axi_rlast_reg = 1'b0; logic [RUSER_W-1:0] temp_s_axi_ruser_reg = 1'b0; logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next; // datapath control logic store_axi_r_int_to_output; logic store_axi_r_int_to_temp; logic store_axi_r_temp_to_output; assign s_axi_rd.rid = s_axi_rid_reg; assign s_axi_rd.rdata = s_axi_rdata_reg; assign s_axi_rd.rresp = s_axi_rresp_reg; assign s_axi_rd.rlast = s_axi_rlast_reg; assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0; assign s_axi_rd.rvalid = s_axi_rvalid_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign s_axi_rready_int_early = s_axi_rd.rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int)); always_comb begin // transfer sink ready state to source s_axi_rvalid_next = s_axi_rvalid_reg; temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg; store_axi_r_int_to_output = 1'b0; store_axi_r_int_to_temp = 1'b0; store_axi_r_temp_to_output = 1'b0; if (s_axi_rready_int_reg) begin // input is ready if (s_axi_rd.rready | ~s_axi_rvalid_reg) begin // output is ready or currently not valid, transfer data to output s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_s_axi_rvalid_next = s_axi_rvalid_int; store_axi_r_int_to_temp = 1'b1; end end else if (s_axi_rd.rready) begin // input is not ready, but output is ready s_axi_rvalid_next = temp_s_axi_rvalid_reg; temp_s_axi_rvalid_next = 1'b0; store_axi_r_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin if (rst) begin s_axi_rvalid_reg <= 1'b0; s_axi_rready_int_reg <= 1'b0; temp_s_axi_rvalid_reg <= 1'b0; end else begin s_axi_rvalid_reg <= s_axi_rvalid_next; s_axi_rready_int_reg <= s_axi_rready_int_early; temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next; end // datapath if (store_axi_r_int_to_output) begin s_axi_rid_reg <= s_axi_rid_int; s_axi_rdata_reg <= s_axi_rdata_int; s_axi_rresp_reg <= s_axi_rresp_int; s_axi_rlast_reg <= s_axi_rlast_int; s_axi_ruser_reg <= s_axi_ruser_int; end else if (store_axi_r_temp_to_output) begin s_axi_rid_reg <= temp_s_axi_rid_reg; s_axi_rdata_reg <= temp_s_axi_rdata_reg; s_axi_rresp_reg <= temp_s_axi_rresp_reg; s_axi_rlast_reg <= temp_s_axi_rlast_reg; s_axi_ruser_reg <= temp_s_axi_ruser_reg; end if (store_axi_r_int_to_temp) begin temp_s_axi_rid_reg <= s_axi_rid_int; temp_s_axi_rdata_reg <= s_axi_rdata_int; temp_s_axi_rresp_reg <= s_axi_rresp_int; temp_s_axi_rlast_reg <= s_axi_rlast_int; temp_s_axi_ruser_reg <= s_axi_ruser_int; end end end endmodule `resetall