// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2018-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4 lite width adapter (read) */ module taxi_axil_adapter_rd ( input wire logic clk, input wire logic rst, /* * AXI4-Lite slave interface */ taxi_axil_if.rd_slv s_axil_rd, /* * AXI4-Lite master interface */ taxi_axil_if.rd_mst m_axil_rd ); // extract parameters localparam S_DATA_W = s_axil_rd.DATA_W; localparam ADDR_W = s_axil_rd.ADDR_W; localparam S_STRB_W = s_axil_rd.STRB_W; localparam logic ARUSER_EN = s_axil_rd.ARUSER_EN && m_axil_rd.ARUSER_EN; localparam ARUSER_W = s_axil_rd.ARUSER_W; localparam logic RUSER_EN = s_axil_rd.RUSER_EN && m_axil_rd.RUSER_EN; localparam RUSER_W = s_axil_rd.RUSER_W; localparam M_DATA_W = m_axil_rd.DATA_W; localparam M_STRB_W = m_axil_rd.STRB_W; localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W); localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W); localparam S_BYTE_LANES = S_STRB_W; localparam M_BYTE_LANES = M_STRB_W; localparam S_BYTE_W = S_DATA_W/S_BYTE_LANES; localparam M_BYTE_W = M_DATA_W/M_BYTE_LANES; localparam S_ADDR_MASK = {ADDR_W{1'b1}} << S_ADDR_BIT_OFFSET; localparam M_ADDR_MASK = {ADDR_W{1'b1}} << M_ADDR_BIT_OFFSET; // check configuration if (S_BYTE_W * S_STRB_W != S_DATA_W) $fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)"); if (M_BYTE_W * M_STRB_W != M_DATA_W) $fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)"); if (S_BYTE_W != M_BYTE_W) $fatal(0, "Error: byte size mismatch (instance %m)"); if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES) $fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)"); if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES) $fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)"); if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass // same width; bypass assign m_axil_rd.araddr = s_axil_rd.araddr; assign m_axil_rd.arprot = s_axil_rd.arprot; assign m_axil_rd.aruser = ARUSER_EN ? s_axil_rd.aruser : '0; assign m_axil_rd.arvalid = s_axil_rd.arvalid; assign s_axil_rd.arready = m_axil_rd.arready; assign s_axil_rd.rdata = m_axil_rd.rdata; assign s_axil_rd.rresp = m_axil_rd.rresp; assign s_axil_rd.ruser = RUSER_EN ? m_axil_rd.ruser : '0; assign s_axil_rd.rvalid = m_axil_rd.rvalid; assign m_axil_rd.rready = s_axil_rd.rready; end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize // output is wider; upsize localparam [0:0] STATE_IDLE = 1'd0, STATE_DATA = 1'd1; logic [0:0] state_reg = STATE_IDLE, state_next; logic s_axil_arready_reg = 1'b0, s_axil_arready_next; logic [S_DATA_W-1:0] s_axil_rdata_reg = '0, s_axil_rdata_next; logic [1:0] s_axil_rresp_reg = '0, s_axil_rresp_next; logic [RUSER_W-1:0] s_axil_ruser_reg = '0, s_axil_ruser_next; logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next; logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next; logic [2:0] m_axil_arprot_reg = '0, m_axil_arprot_next; logic [ARUSER_W-1:0] m_axil_aruser_reg = '0, m_axil_aruser_next; logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next; logic m_axil_rready_reg = 1'b0, m_axil_rready_next; assign s_axil_rd.arready = s_axil_arready_reg; assign s_axil_rd.rdata = s_axil_rdata_reg; assign s_axil_rd.rresp = s_axil_rresp_reg; assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0; assign s_axil_rd.rvalid = s_axil_rvalid_reg; assign m_axil_rd.araddr = m_axil_araddr_reg; assign m_axil_rd.arprot = m_axil_arprot_reg; assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0; assign m_axil_rd.arvalid = m_axil_arvalid_reg; assign m_axil_rd.rready = m_axil_rready_reg; always_comb begin state_next = STATE_IDLE; s_axil_arready_next = 1'b0; s_axil_rdata_next = s_axil_rdata_reg; s_axil_rresp_next = s_axil_rresp_reg; s_axil_ruser_next = s_axil_ruser_reg; s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready; m_axil_araddr_next = m_axil_araddr_reg; m_axil_arprot_next = m_axil_arprot_reg; m_axil_aruser_next = m_axil_aruser_reg; m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready; m_axil_rready_next = 1'b0; case (state_reg) STATE_IDLE: begin s_axil_arready_next = !m_axil_rd.arvalid; if (s_axil_rd.arready && s_axil_rd.arvalid) begin s_axil_arready_next = 1'b0; m_axil_araddr_next = s_axil_rd.araddr; m_axil_arprot_next = s_axil_rd.arprot; m_axil_aruser_next = s_axil_rd.aruser; m_axil_arvalid_next = 1'b1; m_axil_rready_next = !m_axil_rd.rvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axil_rready_next = !s_axil_rd.rvalid; if (m_axil_rd.rready && m_axil_rd.rvalid) begin m_axil_rready_next = 1'b0; s_axil_rdata_next = m_axil_rd.rdata[m_axil_araddr_reg[M_ADDR_BIT_OFFSET - 1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W]; s_axil_rresp_next = m_axil_rd.rresp; s_axil_ruser_next = m_axil_rd.ruser; s_axil_rvalid_next = 1'b1; s_axil_arready_next = !m_axil_rd.arvalid; state_next = STATE_IDLE; end else begin state_next = STATE_DATA; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; s_axil_arready_reg <= s_axil_arready_next; s_axil_rdata_reg <= s_axil_rdata_next; s_axil_rresp_reg <= s_axil_rresp_next; s_axil_ruser_reg <= s_axil_ruser_next; s_axil_rvalid_reg <= s_axil_rvalid_next; m_axil_araddr_reg <= m_axil_araddr_next; m_axil_arprot_reg <= m_axil_arprot_next; m_axil_aruser_reg <= m_axil_aruser_next; m_axil_arvalid_reg <= m_axil_arvalid_next; m_axil_rready_reg <= m_axil_rready_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_arready_reg <= 1'b0; s_axil_rvalid_reg <= 1'b0; m_axil_arvalid_reg <= 1'b0; m_axil_rready_reg <= 1'b0; end end end else begin : downsize // output is narrower; downsize // output bus is wider localparam DATA_W = S_DATA_W; localparam STRB_W = S_STRB_W; // required number of segments in wider bus localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES; localparam SEG_COUNT_W = $clog2(SEG_COUNT); // data width and keep width per segment localparam SEG_DATA_W = DATA_W / SEG_COUNT; localparam SEG_STRB_W = STRB_W / SEG_COUNT; localparam [0:0] STATE_IDLE = 1'd0, STATE_DATA = 1'd1; logic [0:0] state_reg = STATE_IDLE, state_next; logic [SEG_COUNT_W-1:0] current_seg_reg = '0, current_seg_next; logic s_axil_arready_reg = 1'b0, s_axil_arready_next; logic [S_DATA_W-1:0] s_axil_rdata_reg = '0, s_axil_rdata_next; logic [1:0] s_axil_rresp_reg = '0, s_axil_rresp_next; logic [RUSER_W-1:0] s_axil_ruser_reg = '0, s_axil_ruser_next; logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next; logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next; logic [2:0] m_axil_arprot_reg = '0, m_axil_arprot_next; logic [ARUSER_W-1:0] m_axil_aruser_reg = '0, m_axil_aruser_next; logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next; logic m_axil_rready_reg = 1'b0, m_axil_rready_next; assign s_axil_rd.arready = s_axil_arready_reg; assign s_axil_rd.rdata = s_axil_rdata_reg; assign s_axil_rd.rresp = s_axil_rresp_reg; assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0; assign s_axil_rd.rvalid = s_axil_rvalid_reg; assign m_axil_rd.araddr = m_axil_araddr_reg; assign m_axil_rd.arprot = m_axil_arprot_reg; assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0; assign m_axil_rd.arvalid = m_axil_arvalid_reg; assign m_axil_rd.rready = m_axil_rready_reg; always_comb begin state_next = STATE_IDLE; current_seg_next = current_seg_reg; s_axil_arready_next = 1'b0; s_axil_rdata_next = s_axil_rdata_reg; s_axil_rresp_next = s_axil_rresp_reg; s_axil_ruser_next = s_axil_ruser_reg; s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready; m_axil_araddr_next = m_axil_araddr_reg; m_axil_arprot_next = m_axil_arprot_reg; m_axil_aruser_next = m_axil_aruser_reg; m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready; m_axil_rready_next = 1'b0; case (state_reg) STATE_IDLE: begin s_axil_arready_next = !m_axil_rd.arvalid; current_seg_next = s_axil_rd.araddr[M_ADDR_BIT_OFFSET +: SEG_COUNT_W]; s_axil_rresp_next = 2'd0; if (s_axil_rd.arready && s_axil_rd.arvalid) begin s_axil_arready_next = 1'b0; m_axil_araddr_next = s_axil_rd.araddr; m_axil_arprot_next = s_axil_rd.arprot; m_axil_aruser_next = s_axil_rd.aruser; m_axil_arvalid_next = 1'b1; m_axil_rready_next = !m_axil_rd.rvalid; state_next = STATE_DATA; end else begin state_next = STATE_IDLE; end end STATE_DATA: begin m_axil_rready_next = !s_axil_rd.rvalid; if (m_axil_rd.rready && m_axil_rd.rvalid) begin m_axil_rready_next = 1'b0; m_axil_araddr_next = (m_axil_araddr_reg & M_ADDR_MASK) + SEG_STRB_W; s_axil_rdata_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W] = m_axil_rd.rdata; s_axil_ruser_next = m_axil_rd.ruser; current_seg_next = current_seg_reg + 1; if (m_axil.rresp != 0) begin s_axil_rresp_next = m_axil_rd.rresp; end if (current_seg_reg == SEG_COUNT_W'(SEG_COUNT-1)) begin s_axil_rvalid_next = 1'b1; s_axil_arready_next = !m_axil_rd.arvalid; state_next = STATE_IDLE; end else begin m_axil_arvalid_next = 1'b1; state_next = STATE_DATA; end end else begin state_next = STATE_DATA; end end endcase end always_ff @(posedge clk) begin state_reg <= state_next; current_seg_reg <= current_seg_next; s_axil_arready_reg <= s_axil_arready_next; s_axil_rdata_reg <= s_axil_rdata_next; s_axil_rresp_reg <= s_axil_rresp_next; s_axil_ruser_reg <= s_axil_ruser_next; s_axil_rvalid_reg <= s_axil_rvalid_next; m_axil_araddr_reg <= m_axil_araddr_next; m_axil_arprot_reg <= m_axil_arprot_next; m_axil_aruser_reg <= m_axil_aruser_next; m_axil_arvalid_reg <= m_axil_arvalid_next; m_axil_rready_reg <= m_axil_rready_next; if (rst) begin state_reg <= STATE_IDLE; s_axil_arready_reg <= 1'b0; s_axil_rvalid_reg <= 1'b0; m_axil_arvalid_reg <= 1'b0; m_axil_rready_reg <= 1'b0; end end end endmodule `resetall