// SPDX-License-Identifier: MIT /* Copyright (c) 2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * FPGA top-level module */ module fpga # ( // simulation (set to avoid vendor primitives) parameter logic SIM = 1'b0, // vendor ("GENERIC", "XILINX", "ALTERA") parameter string VENDOR = "XILINX", // device family parameter string FAMILY = "zynquplus", // Use 90 degree clock for RGMII transmit parameter logic USE_CLK90 = 1'b0 ) ( /* * Clock: 156.25 MHz LVDS */ input wire logic ref_clk_p, input wire logic ref_clk_n, /* * GPIO */ input wire logic [1:0] btn, input wire logic [7:0] sw, output wire logic [7:0] led, /* * I2C for board management */ inout wire logic i2c_main_scl, inout wire logic i2c_main_sda, output wire logic i2c_main_rst_n, /* * UART: 115200 bps, 8N1 */ output wire logic uart_rxd, input wire logic uart_txd, input wire logic uart_rts, output wire logic uart_cts, output wire logic uart_rst_n, /* * Ethernet: 1000BASE-T RGMII */ input wire logic phy_rx_clk, input wire logic [3:0] phy_rxd, input wire logic phy_rx_ctl, output wire logic phy_tx_clk, output wire logic [3:0] phy_txd, output wire logic phy_tx_ctl ); // Clock and reset wire ref_clk_ibufg; // Internal 125 MHz clock wire clk_125mhz_mmcm_out; wire clk90_125mhz_mmcm_out; wire clk_125mhz_int; wire clk90_125mhz_int; wire rst_125mhz_int; // Internal 312.5 MHz clock wire clk_312mhz_mmcm_out; wire clk_312mhz_int; wire rst_312mhz_int; wire mmcm_rst = ~btn[0]; wire mmcm_locked; wire mmcm_clkfb; IBUFGDS #( .DIFF_TERM("FALSE"), .IBUF_LOW_PWR("FALSE") ) ref_clk_ibufg_inst ( .O (ref_clk_ibufg), .I (ref_clk_p), .IB (ref_clk_n) ); // MMCM instance MMCME4_BASE #( // 156.25 MHz input .CLKIN1_PERIOD(6.4), .REF_JITTER1(0.010), // 156.25 MHz input / 1 = 156.25 MHz PFD (range 10 MHz to 500 MHz) .DIVCLK_DIVIDE(1), // 156.25 MHz PFD * 8 = 1250 MHz VCO (range 800 MHz to 1600 MHz) .CLKFBOUT_MULT_F(8), .CLKFBOUT_PHASE(0), // 1250 MHz / 10 = 125 MHz, 0 degrees .CLKOUT0_DIVIDE_F(10), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), // 1250 MHz / 10 = 125 MHz, 90 degrees .CLKOUT1_DIVIDE(10), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(90), // 1250 MHz / 4 = 312.5 MHz, 0 degrees .CLKOUT2_DIVIDE(4), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), // Not used .CLKOUT3_DIVIDE(1), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), // Not used .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT4_CASCADE("FALSE"), // Not used .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), // Not used .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), // optimized bandwidth .BANDWIDTH("OPTIMIZED"), // don't wait for lock during startup .STARTUP_WAIT("FALSE") ) clk_mmcm_inst ( // 156.25 MHz input .CLKIN1(ref_clk_ibufg), // direct clkfb feeback .CLKFBIN(mmcm_clkfb), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), // 125 MHz, 0 degrees .CLKOUT0(clk_125mhz_mmcm_out), .CLKOUT0B(), // 125 MHz, 90 degrees .CLKOUT1(clk90_125mhz_mmcm_out), .CLKOUT1B(), // 312.5 MHz, 0 degrees .CLKOUT2(clk_312mhz_mmcm_out), .CLKOUT2B(), // Not used .CLKOUT3(), .CLKOUT3B(), // Not used .CLKOUT4(), // Not used .CLKOUT5(), // Not used .CLKOUT6(), // reset input .RST(mmcm_rst), // don't power down .PWRDWN(1'b0), // locked output .LOCKED(mmcm_locked) ); BUFG clk_125mhz_bufg_inst ( .I(clk_125mhz_mmcm_out), .O(clk_125mhz_int) ); BUFG clk90_125mhz_bufg_inst ( .I(clk90_125mhz_mmcm_out), .O(clk90_125mhz_int) ); BUFG clk_312mhz_bufg_inst ( .I(clk_312mhz_mmcm_out), .O(clk_312mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_125mhz_inst ( .clk(clk_125mhz_int), .rst(~mmcm_locked), .out(rst_125mhz_int) ); taxi_sync_reset #( .N(4) ) sync_reset_312mhz_inst ( .clk(clk_312mhz_int), .rst(~mmcm_locked), .out(rst_312mhz_int) ); // GPIO wire btn_int; wire [7:0] sw_int; taxi_debounce_switch #( .WIDTH(9), .N(4), .RATE(125000) ) debounce_switch_inst ( .clk(clk_125mhz_int), .rst(rst_125mhz_int), .in({btn[1], ~sw}), .out({btn_int, sw_int}) ); wire uart_txd_int; wire uart_rts_int; taxi_sync_signal #( .WIDTH(2), .N(2) ) sync_signal_inst ( .clk(clk_125mhz_int), .in({uart_txd, uart_rts}), .out({uart_txd_int, uart_rts_int}) ); wire i2c_scl_i; wire i2c_scl_o; wire i2c_scl_t; wire i2c_sda_i; wire i2c_sda_o; wire i2c_sda_t; assign i2c_scl_i = i2c_main_scl; assign i2c_main_scl = i2c_scl_t ? 1'bz : i2c_scl_o; assign i2c_sda_i = i2c_main_sda; assign i2c_main_sda = i2c_sda_t ? 1'bz : i2c_sda_o; assign i2c_main_rst_n = 1'b1; // IODELAY elements for RGMII interface to PHY wire [3:0] phy_rxd_int; wire phy_rx_ctl_int; IDELAYCTRL #( .SIM_DEVICE("ULTRASCALE") ) idelayctrl_inst ( .REFCLK(clk_312mhz_int), .RST(rst_312mhz_int), .RDY() ); for (genvar n = 0; n < 4; n = n + 1) begin : phy_rxd_idelay_bit IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) idelay_inst ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy_rxd[n]), .DATAIN(1'b0), .DATAOUT(phy_rxd_int[n]), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); end IDELAYE3 #( .DELAY_SRC("IDATAIN"), .CASCADE("NONE"), .DELAY_TYPE("FIXED"), .DELAY_VALUE(0), .REFCLK_FREQUENCY(312.5), .DELAY_FORMAT("TIME"), .UPDATE_MODE("SYNC"), .SIM_DEVICE("ULTRASCALE_PLUS") ) phy_rx_ctl_idelay ( .CASC_IN(1'b0), .CASC_RETURN(1'b0), .CASC_OUT(), .IDATAIN(phy_rx_ctl), .DATAIN(1'b0), .DATAOUT(phy_rx_ctl_int), .CLK(1'b0), .EN_VTC(1'b1), .CE(1'b0), .INC(1'b0), .LOAD(1'b0), .RST(1'b0), .CNTVALUEIN(9'd0), .CNTVALUEOUT() ); fpga_core #( .SIM(SIM), .VENDOR(VENDOR), .FAMILY(FAMILY), .USE_CLK90(USE_CLK90) ) core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk(clk_125mhz_int), .clk90(clk90_125mhz_int), .rst(rst_125mhz_int), /* * GPIO */ .btn(btn_int), .sw(sw_int), .led(led), /* * UART: 115200 bps, 8N1 */ .uart_rxd(uart_rxd), .uart_txd(uart_txd_int), .uart_rts(uart_rts_int), .uart_cts(uart_cts), .uart_rst_n(uart_rst_n), /* * Ethernet: 1000BASE-T RGMII */ .phy_rgmii_rx_clk(phy_rx_clk), .phy_rgmii_rxd(phy_rxd), .phy_rgmii_rx_ctl(phy_rx_ctl), .phy_rgmii_tx_clk(phy_tx_clk), .phy_rgmii_txd(phy_txd), .phy_rgmii_tx_ctl(phy_tx_ctl) ); endmodule `resetall