// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2014-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream multiplexer */ module taxi_axis_mux # ( // Number of AXI stream inputs parameter S_COUNT = 4 ) ( input wire logic clk, input wire logic rst, /* * AXI4-Stream inputs (sinks) */ taxi_axis_if.snk s_axis[S_COUNT], /* * AXI4-Stream output (source) */ taxi_axis_if.src m_axis, /* * Control */ input wire logic enable, input wire logic [$clog2(S_COUNT)-1:0] select ); // extract parameters localparam DATA_W = s_axis.DATA_W; localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN; localparam KEEP_W = s_axis.KEEP_W; localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN; localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN; localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN; localparam ID_W = s_axis.ID_W; localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN; localparam DEST_W = s_axis.DEST_W; localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN; localparam USER_W = s_axis.USER_W; // check configuration if (m_axis.DATA_W != DATA_W) $fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)"); if (KEEP_EN && m_axis.KEEP_W != KEEP_W) $fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)"); parameter CL_S_COUNT = $clog2(S_COUNT); reg [CL_S_COUNT-1:0] select_reg = 2'd0, select_next; reg frame_reg = 1'b0, frame_next; reg [S_COUNT-1:0] s_axis_tready_reg = 0, s_axis_tready_next; // internal datapath reg [DATA_W-1:0] m_axis_tdata_int; reg [KEEP_W-1:0] m_axis_tkeep_int; reg [KEEP_W-1:0] m_axis_tstrb_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg [ID_W-1:0] m_axis_tid_int; reg [DEST_W-1:0] m_axis_tdest_int; reg [USER_W-1:0] m_axis_tuser_int; wire m_axis_tready_int_early; // unpack interface array wire [S_COUNT-1:0][DATA_W-1:0] s_axis_tdata; wire [S_COUNT-1:0][KEEP_W-1:0] s_axis_tkeep; wire [S_COUNT-1:0][KEEP_W-1:0] s_axis_tstrb; wire [S_COUNT-1:0] s_axis_tvalid; wire [S_COUNT-1:0] s_axis_tready; wire [S_COUNT-1:0] s_axis_tlast; wire [S_COUNT-1:0][ID_W-1:0] s_axis_tid; wire [S_COUNT-1:0][DEST_W-1:0] s_axis_tdest; wire [S_COUNT-1:0][USER_W-1:0] s_axis_tuser; for (genvar n = 0; n < S_COUNT; n = n + 1) begin assign s_axis_tdata[n] = s_axis[n].tdata; assign s_axis_tkeep[n] = s_axis[n].tkeep; assign s_axis_tstrb[n] = s_axis[n].tstrb; assign s_axis_tvalid[n] = s_axis[n].tvalid; assign s_axis[n].tready = s_axis_tready[n]; assign s_axis_tlast[n] = s_axis[n].tlast; assign s_axis_tid[n] = s_axis[n].tid; assign s_axis_tdest[n] = s_axis[n].tdest; assign s_axis_tuser[n] = s_axis[n].tuser; end assign s_axis_tready = s_axis_tready_reg; // mux for incoming packet wire [DATA_W-1:0] current_s_tdata = s_axis_tdata[select_reg]; wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep[select_reg]; wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb[select_reg]; wire current_s_tvalid = s_axis_tvalid[select_reg]; wire current_s_tready = s_axis_tready[select_reg]; wire current_s_tlast = s_axis_tlast[select_reg]; wire [ID_W-1:0] current_s_tid = s_axis_tid[select_reg]; wire [DEST_W-1:0] current_s_tdest = s_axis_tdest[select_reg]; wire [USER_W-1:0] current_s_tuser = s_axis_tuser[select_reg]; always_comb begin select_next = select_reg; frame_next = frame_reg; s_axis_tready_next = 0; if (current_s_tvalid & current_s_tready) begin // end of frame detection if (current_s_tlast) begin frame_next = 1'b0; end end if (!frame_reg && enable && s_axis_tvalid[select]) begin // start of frame, grab select value frame_next = 1'b1; select_next = select; end // generate ready signal on selected port s_axis_tready_next[select_next] = m_axis_tready_int_early && frame_next; // pass through selected packet data m_axis_tdata_int = current_s_tdata; m_axis_tkeep_int = current_s_tkeep; m_axis_tstrb_int = current_s_tstrb; m_axis_tvalid_int = current_s_tvalid && current_s_tready && frame_reg; m_axis_tlast_int = current_s_tlast; m_axis_tid_int = current_s_tid; m_axis_tdest_int = current_s_tdest; m_axis_tuser_int = current_s_tuser; end always_ff @(posedge clk) begin select_reg <= select_next; frame_reg <= frame_next; s_axis_tready_reg <= s_axis_tready_next; if (rst) begin select_reg <= 0; frame_reg <= 1'b0; s_axis_tready_reg <= 0; end end // output datapath logic reg [DATA_W-1:0] m_axis_tdata_reg = '0; reg [KEEP_W-1:0] m_axis_tkeep_reg = '0; reg [KEEP_W-1:0] m_axis_tstrb_reg = '0; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg [ID_W-1:0] m_axis_tid_reg = '0; reg [DEST_W-1:0] m_axis_tdest_reg = '0; reg [USER_W-1:0] m_axis_tuser_reg = '0; reg [DATA_W-1:0] temp_m_axis_tdata_reg = '0; reg [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0; reg [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg [ID_W-1:0] temp_m_axis_tid_reg = '0; reg [DEST_W-1:0] temp_m_axis_tdest_reg = '0; reg [USER_W-1:0] temp_m_axis_tuser_reg = '0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis.tdata = m_axis_tdata_reg; assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1; assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep; assign m_axis.tvalid = m_axis_tvalid_reg; assign m_axis.tlast = m_axis_tlast_reg; assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0; assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0; assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); always_comb begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis.tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis.tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tstrb_reg <= m_axis_tstrb_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tid_reg <= m_axis_tid_int; m_axis_tdest_reg <= m_axis_tdest_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tstrb_reg <= temp_m_axis_tstrb_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tid_reg <= temp_m_axis_tid_reg; m_axis_tdest_reg <= temp_m_axis_tdest_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tstrb_reg <= m_axis_tstrb_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tid_reg <= m_axis_tid_int; temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall