// SPDX-License-Identifier: CERN-OHL-S-2.0 /* Copyright (c) 2014-2025 FPGA Ninja, LLC Authors: - Alex Forencich */ `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream arbitrated multiplexer */ module taxi_axis_arb_mux # ( // Number of AXI stream inputs parameter S_COUNT = 4, // Update tid with routing information parameter logic UPDATE_TID = 1'b0, // select round robin arbitration parameter logic ARB_ROUND_ROBIN = 1'b0, // LSB priority selection parameter logic ARB_LSB_HIGH_PRIO = 1'b1 ) ( input wire logic clk, input wire logic rst, /* * AXI4-Stream inputs (sink) */ taxi_axis_if.snk s_axis[S_COUNT], /* * AXI4-Stream output (source) */ taxi_axis_if.src m_axis ); // extract parameters localparam DATA_W = s_axis.DATA_W; localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN; localparam KEEP_W = s_axis.KEEP_W; localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN; localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN; localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN; localparam S_ID_W = s_axis.ID_W; localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN; localparam DEST_W = s_axis.DEST_W; localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN; localparam USER_W = s_axis.USER_W; localparam M_ID_W = m_axis.ID_W; localparam CL_S_COUNT = $clog2(S_COUNT); localparam S_ID_W_INT = S_ID_W > 0 ? S_ID_W : 1; // check configuration if (UPDATE_TID) begin if (!ID_EN) $fatal(0, "Error: UPDATE_TID set requires ID_EN set (instance %m)"); if (M_ID_W < CL_S_COUNT) $fatal(0, "Error: M_ID_W too small for port count (instance %m)"); end // internal datapath logic [DATA_W-1:0] m_axis_tdata_int; logic [KEEP_W-1:0] m_axis_tkeep_int; logic [KEEP_W-1:0] m_axis_tstrb_int; logic m_axis_tvalid_int; logic m_axis_tready_int_reg = 1'b0; logic m_axis_tlast_int; logic [M_ID_W-1:0] m_axis_tid_int; logic [DEST_W-1:0] m_axis_tdest_int; logic [USER_W-1:0] m_axis_tuser_int; wire m_axis_tready_int_early; if (S_COUNT == 1) begin // degenerate case assign s_axis[0].tready = m_axis_tready_int_reg; always_comb begin // pass through selected packet data m_axis_tdata_int = s_axis[0].tdata; m_axis_tkeep_int = s_axis[0].tkeep; m_axis_tstrb_int = s_axis[0].tstrb; m_axis_tvalid_int = s_axis[0].tvalid && m_axis_tready_int_reg; m_axis_tlast_int = s_axis[0].tlast; m_axis_tid_int = M_ID_W'(s_axis[0].tid); m_axis_tdest_int = s_axis[0].tdest; m_axis_tuser_int = s_axis[0].tuser; end end else begin wire [S_COUNT-1:0] req; wire [S_COUNT-1:0] ack; wire [S_COUNT-1:0] grant; wire grant_valid; wire [CL_S_COUNT-1:0] grant_index; // input registers to pipeline arbitration delay logic [DATA_W-1:0] s_axis_tdata_reg[S_COUNT] = '{S_COUNT{'0}}; logic [KEEP_W-1:0] s_axis_tkeep_reg[S_COUNT] = '{S_COUNT{'0}}; logic [KEEP_W-1:0] s_axis_tstrb_reg[S_COUNT] = '{S_COUNT{'0}}; logic [S_COUNT-1:0] s_axis_tvalid_reg = '0; logic [S_COUNT-1:0] s_axis_tlast_reg = '0; logic [S_ID_W-1:0] s_axis_tid_reg[S_COUNT] = '{S_COUNT{'0}}; logic [DEST_W-1:0] s_axis_tdest_reg[S_COUNT] = '{S_COUNT{'0}}; logic [USER_W-1:0] s_axis_tuser_reg[S_COUNT] = '{S_COUNT{'0}}; // unpack interface array wire [S_COUNT-1:0] s_axis_tvalid; wire [S_COUNT-1:0] s_axis_tready; for (genvar n = 0; n < S_COUNT; n = n + 1) begin assign s_axis_tvalid[n] = s_axis[n].tvalid; assign s_axis[n].tready = s_axis_tready[n]; end assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant); // mux for incoming packet wire [DATA_W-1:0] current_s_tdata = s_axis_tdata_reg[grant_index]; wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_index]; wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb_reg[grant_index]; wire current_s_tvalid = s_axis_tvalid_reg[grant_index]; wire current_s_tready = s_axis_tready[grant_index]; wire current_s_tlast = s_axis_tlast_reg[grant_index]; wire [S_ID_W-1:0] current_s_tid = s_axis_tid_reg[grant_index]; wire [DEST_W-1:0] current_s_tdest = s_axis_tdest_reg[grant_index]; wire [USER_W-1:0] current_s_tuser = s_axis_tuser_reg[grant_index]; // arbiter instance taxi_arbiter #( .PORTS(S_COUNT), .ARB_ROUND_ROBIN(ARB_ROUND_ROBIN), .ARB_BLOCK(1'b1), .ARB_BLOCK_ACK(1'b1), .LSB_HIGH_PRIO(ARB_LSB_HIGH_PRIO) ) arb_inst ( .clk(clk), .rst(rst), .req(req), .ack(ack), .grant(grant), .grant_valid(grant_valid), .grant_index(grant_index) ); assign req = s_axis_tvalid | (s_axis_tvalid_reg & ~grant); assign ack = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_EN ? s_axis_tlast_reg : {S_COUNT{1'b1}}); always_comb begin // pass through selected packet data m_axis_tdata_int = current_s_tdata; m_axis_tkeep_int = current_s_tkeep; m_axis_tstrb_int = current_s_tstrb; m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid; m_axis_tlast_int = current_s_tlast; m_axis_tid_int = M_ID_W'(current_s_tid); if (UPDATE_TID && S_COUNT > 1) begin m_axis_tid_int[M_ID_W-1:M_ID_W-CL_S_COUNT] = grant_index; end m_axis_tdest_int = current_s_tdest; m_axis_tuser_int = current_s_tuser; end for (genvar n = 0; n < S_COUNT; n = n + 1) begin always_ff @(posedge clk) begin // register inputs if (s_axis_tready[n]) begin s_axis_tdata_reg[n] <= s_axis[n].tdata; s_axis_tkeep_reg[n] <= s_axis[n].tkeep; s_axis_tstrb_reg[n] <= s_axis[n].tstrb; s_axis_tvalid_reg[n] <= s_axis[n].tvalid; s_axis_tlast_reg[n] <= s_axis[n].tlast; s_axis_tid_reg[n] <= s_axis[n].tid; s_axis_tdest_reg[n] <= s_axis[n].tdest; s_axis_tuser_reg[n] <= s_axis[n].tuser; end if (rst) begin s_axis_tvalid_reg[n] <= 1'b0; end end end end // output datapath logic logic [DATA_W-1:0] m_axis_tdata_reg = '0; logic [KEEP_W-1:0] m_axis_tkeep_reg = '0; logic [KEEP_W-1:0] m_axis_tstrb_reg = '0; logic m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; logic m_axis_tlast_reg = 1'b0; logic [M_ID_W-1:0] m_axis_tid_reg = '0; logic [DEST_W-1:0] m_axis_tdest_reg = '0; logic [USER_W-1:0] m_axis_tuser_reg = '0; logic [DATA_W-1:0] temp_m_axis_tdata_reg = '0; logic [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0; logic [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0; logic temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; logic temp_m_axis_tlast_reg = 1'b0; logic [M_ID_W-1:0] temp_m_axis_tid_reg = '0; logic [DEST_W-1:0] temp_m_axis_tdest_reg = '0; logic [USER_W-1:0] temp_m_axis_tuser_reg = '0; // datapath control logic store_axis_int_to_output; logic store_axis_int_to_temp; logic store_axis_temp_to_output; assign m_axis.tdata = m_axis_tdata_reg; assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1; assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep; assign m_axis.tvalid = m_axis_tvalid_reg; assign m_axis.tlast = LAST_EN ? m_axis_tlast_reg : 1'b1; assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0; assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0; assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); always_comb begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis.tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis.tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always_ff @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tstrb_reg <= m_axis_tstrb_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tid_reg <= m_axis_tid_int; m_axis_tdest_reg <= m_axis_tdest_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tstrb_reg <= temp_m_axis_tstrb_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tid_reg <= temp_m_axis_tid_reg; m_axis_tdest_reg <= temp_m_axis_tdest_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tstrb_reg <= m_axis_tstrb_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tid_reg <= m_axis_tid_int; temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall