Files
taxi/rtl/axis/taxi_axis_fifo.sv
Alex Forencich 03c0883356 axis: Add AXI stream FIFO module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-03 22:43:17 -08:00

525 lines
20 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2013-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream FIFO
*/
module taxi_axis_fifo #
(
// FIFO depth in words
// KEEP_W words per cycle if KEEP_EN set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// number of RAM pipeline registers
parameter RAM_PIPELINE = 1,
// use output FIFO
// When set, the RAM read enable and pipeline clock enables are removed
parameter logic OUTPUT_FIFO_EN = 1'b0,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_EN set
parameter logic FRAME_FIFO = 1'b0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames larger than FIFO
// Requires FRAME_FIFO set
parameter logic DROP_OVERSIZE_FRAME = FRAME_FIFO,
// Drop frames marked bad
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter logic DROP_BAD_FRAME = 1'b0,
// Drop incoming frames when full
// When set, s_axis.tready is always asserted
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter logic DROP_WHEN_FULL = 1'b0,
// Mark incoming frames as bad frames when full
// When set, s_axis.tready is always asserted
// Requires FRAME_FIFO to be clear
parameter logic MARK_WHEN_FULL = 1'b0,
// Enable pause request input
parameter logic PAUSE_EN = 1'b0,
// Pause between frames
parameter logic FRAME_PAUSE = FRAME_FIFO
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis,
/*
* Pause
*/
input wire logic pause_req = 1'b0,
output wire logic pause_ack,
/*
* Status
*/
output wire logic [$clog2(DEPTH):0] status_depth,
output wire logic [$clog2(DEPTH):0] status_depth_commit,
output wire logic status_overflow,
output wire logic status_bad_frame,
output wire logic status_good_frame
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis.DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis.USER_W;
localparam CL_DEPTH = $clog2(DEPTH);
localparam CL_KEEP_W = $clog2(KEEP_W);
localparam FIFO_AW = (KEEP_EN && KEEP_W > 1) ? $clog2(DEPTH/KEEP_W) : CL_DEPTH;
localparam OUTPUT_FIFO_AW = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7);
// check configuration
if (FRAME_FIFO && !LAST_EN)
$fatal(0, "Error: FRAME_FIFO set requires LAST_EN set (instance %m)");
if (DROP_OVERSIZE_FRAME && !FRAME_FIFO)
$fatal(0, "Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)");
if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME))
$fatal(0, "Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME))
$fatal(0, "Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
if ((DROP_BAD_FRAME || MARK_WHEN_FULL) && (USER_BAD_FRAME_MASK & {USER_W{1'b1}}) == 0)
$fatal(0, "Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
if (MARK_WHEN_FULL && FRAME_FIFO)
$fatal(0, "Error: MARK_WHEN_FULL is not compatible with FRAME_FIFO (instance %m)");
if (MARK_WHEN_FULL && !LAST_EN)
$fatal(0, "Error: MARK_WHEN_FULL set requires LAST_EN set (instance %m)");
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
localparam KEEP_OFFSET = DATA_W;
localparam STRB_OFFSET = KEEP_OFFSET + (KEEP_EN ? KEEP_W : 0);
localparam LAST_OFFSET = STRB_OFFSET + (STRB_EN ? KEEP_W : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_EN ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_EN ? ID_W : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_EN ? DEST_W : 0);
localparam WIDTH = USER_OFFSET + (USER_EN ? USER_W : 0);
logic [FIFO_AW:0] wr_ptr_reg = '0;
logic [FIFO_AW:0] wr_ptr_commit_reg = '0;
logic [FIFO_AW:0] rd_ptr_reg = '0;
(* ramstyle = "no_rw_check" *)
logic [WIDTH-1:0] mem[(2**FIFO_AW)-1:0];
(* shreg_extract = "no" *)
logic [WIDTH-1:0] mem_rd_data_pipe_reg[RAM_PIPELINE+1-1:0];
logic [RAM_PIPELINE+1-1:0] mem_rd_valid_pipe_reg = '0;
// full when first MSB differs but the rest match
wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {FIFO_AW{1'b0}}});
// empty when pointers match exactly
wire empty = wr_ptr_commit_reg == rd_ptr_reg;
// overflow within packet, same as full but based on write commit
wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {FIFO_AW{1'b0}}});
logic s_frame_reg = 1'b0;
logic drop_frame_reg = 1'b0;
logic mark_frame_reg = 1'b0;
logic send_frame_reg = 1'b0;
logic [FIFO_AW:0] depth_reg = '0;
logic [FIFO_AW:0] depth_commit_reg = '0;
logic overflow_reg = 1'b0;
logic bad_frame_reg = 1'b0;
logic good_frame_reg = 1'b0;
assign s_axis.tready = FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : (!full || MARK_WHEN_FULL);
wire [WIDTH-1:0] mem_wr_data;
assign mem_wr_data[DATA_W-1:0] = s_axis.tdata;
if (KEEP_EN) assign mem_wr_data[KEEP_OFFSET +: KEEP_W] = s_axis.tkeep;
if (STRB_EN) assign mem_wr_data[STRB_OFFSET +: KEEP_W] = s_axis.tkeep;
if (LAST_EN) assign mem_wr_data[LAST_OFFSET] = s_axis.tlast | mark_frame_reg;
if (ID_EN) assign mem_wr_data[ID_OFFSET +: ID_W] = s_axis.tid;
if (DEST_EN) assign mem_wr_data[DEST_OFFSET +: DEST_W] = s_axis.tdest;
if (USER_EN) assign mem_wr_data[USER_OFFSET +: USER_W] = mark_frame_reg ? USER_BAD_FRAME_VALUE : s_axis.tuser;
wire [WIDTH-1:0] mem_rd_data = mem_rd_data_pipe_reg[RAM_PIPELINE+1-1];
wire m_axis_tready_pipe;
wire m_axis_tvalid_pipe = mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1];
wire [DATA_W-1:0] m_axis_tdata_pipe = mem_rd_data[DATA_W-1:0];
wire [KEEP_W-1:0] m_axis_tkeep_pipe = KEEP_EN ? mem_rd_data[KEEP_OFFSET +: KEEP_W] : '1;
wire [KEEP_W-1:0] m_axis_tstrb_pipe = STRB_EN ? mem_rd_data[STRB_OFFSET +: KEEP_W] : m_axis_tkeep_pipe;
wire m_axis_tlast_pipe = LAST_EN ? mem_rd_data[LAST_OFFSET] : 1'b1;
wire [ID_W-1:0] m_axis_tid_pipe = ID_EN ? mem_rd_data[ID_OFFSET +: ID_W] : '0;
wire [DEST_W-1:0] m_axis_tdest_pipe = DEST_EN ? mem_rd_data[DEST_OFFSET +: DEST_W] : '0;
wire [USER_W-1:0] m_axis_tuser_pipe = USER_EN ? mem_rd_data[USER_OFFSET +: USER_W] : '0;
wire m_axis_tready_out;
wire m_axis_tvalid_out;
wire [DATA_W-1:0] m_axis_tdata_out;
wire [KEEP_W-1:0] m_axis_tkeep_out;
wire [KEEP_W-1:0] m_axis_tstrb_out;
wire m_axis_tlast_out;
wire [ID_W-1:0] m_axis_tid_out;
wire [DEST_W-1:0] m_axis_tdest_out;
wire [USER_W-1:0] m_axis_tuser_out;
wire pipe_ready;
assign status_depth = (KEEP_EN && KEEP_W > 1) ? {depth_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(depth_reg);
assign status_depth_commit = (KEEP_EN && KEEP_W > 1) ? {depth_commit_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(depth_commit_reg);
assign status_overflow = overflow_reg;
assign status_bad_frame = bad_frame_reg;
assign status_good_frame = good_frame_reg;
// Write logic
always_ff @(posedge clk) begin
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
if (s_axis.tready && s_axis.tvalid && LAST_EN) begin
// track input frame status
s_frame_reg <= !s_axis.tlast;
end
if (FRAME_FIFO) begin
// frame FIFO mode
if (s_axis.tready && s_axis.tvalid) begin
// transfer in
if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_reg <= 1'b1;
if (s_axis.tlast) begin
// end of frame, reset write pointer
wr_ptr_reg <= wr_ptr_commit_reg;
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
// store it
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_reg <= wr_ptr_reg + 1;
if (s_axis.tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin
// end of frame or send frame
send_frame_reg <= !s_axis.tlast;
if (s_axis.tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis.tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_reg <= wr_ptr_commit_reg;
bad_frame_reg <= 1'b1;
end else begin
// good packet or packet overflow, update write pointer
wr_ptr_commit_reg <= wr_ptr_reg + 1;
good_frame_reg <= s_axis.tlast;
end
end
end
end else if (s_axis.tvalid && full_wr && !DROP_OVERSIZE_FRAME) begin
// data valid with packet overflow
// update write pointer
send_frame_reg <= 1'b1;
wr_ptr_commit_reg <= wr_ptr_reg;
end
end else begin
// normal FIFO mode
if (s_axis.tready && s_axis.tvalid) begin
if (drop_frame_reg && MARK_WHEN_FULL) begin
// currently dropping frame
if (s_axis.tlast) begin
// end of frame
if (!full && mark_frame_reg) begin
// terminate marked frame
mark_frame_reg <= 1'b0;
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_reg <= wr_ptr_reg + 1;
wr_ptr_commit_reg <= wr_ptr_reg + 1;
end
// end of frame, clear drop flag
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else if ((full || mark_frame_reg) && MARK_WHEN_FULL) begin
// full or marking frame
// drop frame; mark if this isn't the first cycle
drop_frame_reg <= 1'b1;
mark_frame_reg <= mark_frame_reg || s_frame_reg;
if (s_axis.tlast) begin
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
// transfer in
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_reg <= wr_ptr_reg + 1;
wr_ptr_commit_reg <= wr_ptr_reg + 1;
end
end else if ((!full && !drop_frame_reg && mark_frame_reg) && MARK_WHEN_FULL) begin
// terminate marked frame
mark_frame_reg <= 1'b0;
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_reg <= wr_ptr_reg + 1;
wr_ptr_commit_reg <= wr_ptr_reg + 1;
end
end
if (rst) begin
wr_ptr_reg <= '0;
wr_ptr_commit_reg <= '0;
s_frame_reg <= 1'b0;
drop_frame_reg <= 1'b0;
mark_frame_reg <= 1'b0;
send_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// Status
always_ff @(posedge clk) begin
depth_reg <= wr_ptr_reg - rd_ptr_reg;
depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_reg;
end
// Read logic
always_ff @(posedge clk) begin
if (m_axis_tready_pipe) begin
// output ready; invalidate stage
mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0;
end
for (integer j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin
if (m_axis_tready_pipe || ((RAM_PIPELINE+1)'(~mem_rd_valid_pipe_reg) >> j) != 0) begin
// if (m_axis_tready_pipe || &mem_rd_valid_pipe_reg[1:1] == 0) begin
// output ready or bubble in pipeline; transfer down pipeline
mem_rd_valid_pipe_reg[j] <= mem_rd_valid_pipe_reg[j-1];
mem_rd_data_pipe_reg[j] <= mem_rd_data_pipe_reg[j-1];
mem_rd_valid_pipe_reg[j-1] <= 1'b0;
end
end
if (m_axis_tready_pipe || &mem_rd_valid_pipe_reg == 0) begin
// output ready or bubble in pipeline; read new data from FIFO
mem_rd_valid_pipe_reg[0] <= 1'b0;
mem_rd_data_pipe_reg[0] <= mem[rd_ptr_reg[FIFO_AW-1:0]];
if (!empty && pipe_ready) begin
// not empty, increment pointer
mem_rd_valid_pipe_reg[0] <= 1'b1;
rd_ptr_reg <= rd_ptr_reg + 1;
end
end
if (rst) begin
rd_ptr_reg <= '0;
mem_rd_valid_pipe_reg <= '0;
end
end
if (!OUTPUT_FIFO_EN) begin
assign pipe_ready = 1'b1;
assign m_axis_tready_pipe = m_axis_tready_out;
assign m_axis_tvalid_out = m_axis_tvalid_pipe;
assign m_axis_tdata_out = m_axis_tdata_pipe;
assign m_axis_tkeep_out = m_axis_tkeep_pipe;
assign m_axis_tstrb_out = m_axis_tstrb_pipe;
assign m_axis_tlast_out = m_axis_tlast_pipe;
assign m_axis_tid_out = m_axis_tid_pipe;
assign m_axis_tdest_out = m_axis_tdest_pipe;
assign m_axis_tuser_out = m_axis_tuser_pipe;
end else begin : output_fifo
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic m_axis_tvalid_reg = 1'b0;
logic m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] m_axis_tid_reg = '0;
logic [DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_wr_ptr_reg = '0;
logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_rd_ptr_reg = '0;
logic out_fifo_half_full_reg = 1'b0;
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_AW{1'b0}}});
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [DATA_W-1:0] out_fifo_tdata[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [KEEP_W-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [KEEP_W-1:0] out_fifo_tstrb[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic out_fifo_tlast[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [ID_W-1:0] out_fifo_tid[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [DEST_W-1:0] out_fifo_tdest[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [USER_W-1:0] out_fifo_tuser[2**OUTPUT_FIFO_AW-1:0];
assign pipe_ready = !out_fifo_half_full_reg;
assign m_axis_tready_pipe = 1'b1;
assign m_axis_tdata_out = m_axis_tdata_reg;
assign m_axis_tkeep_out = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis_tstrb_out = STRB_EN ? m_axis_tstrb_reg : m_axis_tkeep_out;
assign m_axis_tvalid_out = m_axis_tvalid_reg;
assign m_axis_tlast_out = LAST_EN ? m_axis_tlast_reg : 1'b1;
assign m_axis_tid_out = ID_EN ? m_axis_tid_reg : '0;
assign m_axis_tdest_out = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis_tuser_out = USER_EN ? m_axis_tuser_reg : '0;
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out;
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_AW-1);
if (!out_fifo_full && m_axis_tvalid_pipe) begin
out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdata_pipe;
out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tkeep_pipe;
out_fifo_tstrb[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tstrb_pipe;
out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tlast_pipe;
out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tid_pipe;
out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdest_pipe;
out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tuser_pipe;
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
end
if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin
m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tstrb_reg <= out_fifo_tstrb[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tvalid_reg <= 1'b1;
m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
end
if (rst) begin
out_fifo_wr_ptr_reg <= '0;
out_fifo_rd_ptr_reg <= '0;
m_axis_tvalid_reg <= 1'b0;
end
end
end
if (PAUSE_EN) begin : pause
// Pause logic
logic pause_reg = 1'b0;
logic pause_frame_reg = 1'b0;
assign m_axis_tready_out = m_axis.tready && !pause_reg;
assign m_axis.tvalid = m_axis_tvalid_out && !pause_reg;
assign m_axis.tdata = m_axis_tdata_out;
assign m_axis.tkeep = m_axis_tkeep_out;
assign m_axis.tstrb = m_axis_tstrb_out;
assign m_axis.tlast = m_axis_tlast_out;
assign m_axis.tid = m_axis_tid_out;
assign m_axis.tdest = m_axis_tdest_out;
assign m_axis.tuser = m_axis_tuser_out;
assign pause_ack = pause_reg;
always_ff @(posedge clk) begin
if (FRAME_PAUSE) begin
if (pause_reg) begin
// paused; update pause status
pause_reg <= pause_req;
end else if (m_axis_tvalid_out) begin
// frame transfer; set frame bit
pause_frame_reg <= 1'b1;
if (m_axis.tready && m_axis.tlast) begin
// end of frame; clear frame bit and update pause status
pause_frame_reg <= 1'b0;
pause_reg <= pause_req;
end
end else if (!pause_frame_reg) begin
// idle; update pause status
pause_reg <= pause_req;
end
end else begin
pause_reg <= pause_req;
end
if (rst) begin
pause_frame_reg <= 1'b0;
pause_reg <= 1'b0;
end
end
end else begin
assign m_axis_tready_out = m_axis.tready;
assign m_axis.tvalid = m_axis_tvalid_out;
assign m_axis.tdata = m_axis_tdata_out;
assign m_axis.tkeep = m_axis_tkeep_out;
assign m_axis.tstrb = m_axis_tstrb_out;
assign m_axis.tlast = m_axis_tlast_out;
assign m_axis.tid = m_axis_tid_out;
assign m_axis.tdest = m_axis_tdest_out;
assign m_axis.tuser = m_axis_tuser_out;
assign pause_ack = 1'b0;
end
endmodule
`resetall