Files
taxi/src/axi/rtl/taxi_axi_fifo_wr.sv
Alex Forencich 004246608e Use logic instead of reg
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-11-07 02:14:19 -08:00

397 lines
12 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 FIFO (write)
*/
module taxi_axi_fifo_wr #
(
// Write data FIFO depth (cycles)
parameter FIFO_DEPTH = 32,
// Hold write address until write data in FIFO, if possible
parameter logic FIFO_DELAY = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.wr_slv s_axi_wr,
/*
* AXI4 master interface
*/
taxi_axi_if.wr_mst m_axi_wr
);
// extract parameters
localparam DATA_W = s_axi_wr.DATA_W;
localparam ADDR_W = s_axi_wr.ADDR_W;
localparam STRB_W = s_axi_wr.STRB_W;
localparam ID_W = s_axi_wr.ID_W;
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN;
localparam AWUSER_W = s_axi_wr.AWUSER_W;
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN;
localparam WUSER_W = s_axi_wr.WUSER_W;
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN;
localparam BUSER_W = s_axi_wr.BUSER_W;
localparam STRB_OFFSET = DATA_W;
localparam LAST_OFFSET = STRB_OFFSET + STRB_W;
localparam WUSER_OFFSET = LAST_OFFSET + 1;
localparam WWIDTH = WUSER_OFFSET + (WUSER_EN ? WUSER_W : 0);
localparam FIFO_AW = $clog2(FIFO_DEPTH);
if (m_axi_wr.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_wr.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
logic [FIFO_AW:0] wr_ptr_reg = '0, wr_ptr_next;
logic [FIFO_AW:0] wr_addr_reg = '0;
logic [FIFO_AW:0] rd_ptr_reg = '0, rd_ptr_next;
logic [FIFO_AW:0] rd_addr_reg = '0;
(* ramstyle = "no_rw_check" *)
logic [WWIDTH-1:0] mem[2**FIFO_AW];
logic [WWIDTH-1:0] mem_read_data_reg;
logic mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [WWIDTH-1:0] s_axi_w;
logic [WWIDTH-1:0] m_axi_w_reg;
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
// full when first MSB different but rest same
wire full = ((wr_ptr_reg[FIFO_AW] != rd_ptr_reg[FIFO_AW]) &&
(wr_ptr_reg[FIFO_AW-1:0] == rd_ptr_reg[FIFO_AW-1:0]));
// empty when pointers match exactly
wire empty = wr_ptr_reg == rd_ptr_reg;
wire hold;
// control signals
logic write;
logic read;
logic store_output;
assign s_axi_wr.wready = !full && !hold;
assign s_axi_w[DATA_W-1:0] = s_axi_wr.wdata;
assign s_axi_w[STRB_OFFSET +: STRB_W] = s_axi_wr.wstrb;
assign s_axi_w[LAST_OFFSET] = s_axi_wr.wlast;
if (WUSER_EN) assign s_axi_w[WUSER_OFFSET +: WUSER_W] = s_axi_wr.wuser;
if (FIFO_DELAY) begin
// store AW channel value until W channel burst is stored in FIFO or FIFO is full
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_TRANSFER_IN = 2'd1,
STATE_TRANSFER_OUT = 2'd2;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic hold_reg = 1'b1, hold_next;
logic [8:0] count_reg = 9'd0, count_next;
logic [ID_W-1:0] m_axi_awid_reg = '0, m_axi_awid_next;
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0, m_axi_awaddr_next;
logic [7:0] m_axi_awlen_reg = '0, m_axi_awlen_next;
logic [2:0] m_axi_awsize_reg = '0, m_axi_awsize_next;
logic [1:0] m_axi_awburst_reg = '0, m_axi_awburst_next;
logic m_axi_awlock_reg = '0, m_axi_awlock_next;
logic [3:0] m_axi_awcache_reg = '0, m_axi_awcache_next;
logic [2:0] m_axi_awprot_reg = '0, m_axi_awprot_next;
logic [3:0] m_axi_awqos_reg = '0, m_axi_awqos_next;
logic [3:0] m_axi_awregion_reg = '0, m_axi_awregion_next;
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0, m_axi_awuser_next;
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
assign m_axi_wr.awid = m_axi_awid_reg;
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
assign m_axi_wr.awlen = m_axi_awlen_reg;
assign m_axi_wr.awsize = m_axi_awsize_reg;
assign m_axi_wr.awburst = m_axi_awburst_reg;
assign m_axi_wr.awlock = m_axi_awlock_reg;
assign m_axi_wr.awcache = m_axi_awcache_reg;
assign m_axi_wr.awprot = m_axi_awprot_reg;
assign m_axi_wr.awqos = m_axi_awqos_reg;
assign m_axi_wr.awregion = m_axi_awregion_reg;
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
assign s_axi_wr.awready = s_axi_awready_reg;
assign hold = hold_reg;
always_comb begin
state_next = STATE_IDLE;
hold_next = hold_reg;
count_next = count_reg;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_wr.awready;
s_axi_awready_next = s_axi_awready_reg;
case (state_reg)
STATE_IDLE: begin
s_axi_awready_next = !m_axi_wr.awvalid || m_axi_wr.awready;
hold_next = 1'b1;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
m_axi_awid_next = s_axi_wr.awid;
m_axi_awaddr_next = s_axi_wr.awaddr;
m_axi_awlen_next = s_axi_wr.awlen;
m_axi_awsize_next = s_axi_wr.awsize;
m_axi_awburst_next = s_axi_wr.awburst;
m_axi_awlock_next = s_axi_wr.awlock;
m_axi_awcache_next = s_axi_wr.awcache;
m_axi_awprot_next = s_axi_wr.awprot;
m_axi_awqos_next = s_axi_wr.awqos;
m_axi_awregion_next = s_axi_wr.awregion;
m_axi_awuser_next = s_axi_wr.awuser;
hold_next = 1'b0;
count_next = 0;
state_next = STATE_TRANSFER_IN;
end else begin
state_next = STATE_IDLE;
end
end
STATE_TRANSFER_IN: begin
s_axi_awready_next = 1'b0;
hold_next = 1'b0;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
count_next = count_reg + 1;
if (s_axi_wr.wlast) begin
m_axi_awvalid_next = 1'b1;
hold_next = 1'b1;
state_next = STATE_IDLE;
end else if (FIFO_AW < 8 && count_next == 2**FIFO_AW) begin
m_axi_awvalid_next = 1'b1;
state_next = STATE_TRANSFER_OUT;
end else begin
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
end
STATE_TRANSFER_OUT: begin
s_axi_awready_next = 1'b0;
hold_next = 1'b0;
if (s_axi.wready && s_axi.wvalid) begin
if (s_axi.wlast) begin
hold_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end
default: begin
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
hold_reg <= hold_next;
count_reg <= count_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
s_axi_awready_reg <= s_axi_awready_next;
if (rst) begin
state_reg <= STATE_IDLE;
hold_reg <= 1'b1;
m_axi_awvalid_reg <= 1'b0;
s_axi_awready_reg <= 1'b0;
end
end
end else begin
// bypass AW channel
assign m_axi_wr.awid = s_axi_wr.awid;
assign m_axi_wr.awaddr = s_axi_wr.awaddr;
assign m_axi_wr.awlen = s_axi_wr.awlen;
assign m_axi_wr.awsize = s_axi_wr.awsize;
assign m_axi_wr.awburst = s_axi_wr.awburst;
assign m_axi_wr.awlock = s_axi_wr.awlock;
assign m_axi_wr.awcache = s_axi_wr.awcache;
assign m_axi_wr.awprot = s_axi_wr.awprot;
assign m_axi_wr.awqos = s_axi_wr.awqos;
assign m_axi_wr.awregion = s_axi_wr.awregion;
assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0;
assign m_axi_wr.awvalid = s_axi_wr.awvalid;
assign s_axi_wr.awready = m_axi_wr.awready;
assign hold = 1'b0;
end
// bypass B channel
assign s_axi_wr.bid = m_axi_wr.bid;
assign s_axi_wr.bresp = m_axi_wr.bresp;
if (BUSER_EN) begin
assign s_axi_wr.buser = m_axi_wr.buser;
end else begin
assign s_axi_wr.buser = '0;
end
assign s_axi_wr.bvalid = m_axi_wr.bvalid;
assign m_axi_wr.bready = s_axi_wr.bready;
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
assign m_axi_wr.wdata = m_axi_w_reg[DATA_W-1:0];
assign m_axi_wr.wstrb = m_axi_w_reg[STRB_OFFSET +: STRB_W];
assign m_axi_wr.wlast = m_axi_w_reg[LAST_OFFSET];
if (WUSER_EN) begin
assign m_axi_wr.wuser = m_axi_w_reg[WUSER_OFFSET +: WUSER_W];
end else begin
assign m_axi_wr.wuser = '0;
end
// Write logic
always_comb begin
write = 1'b0;
wr_ptr_next = wr_ptr_reg;
if (s_axi_wr.wvalid) begin
// input data valid
if (!full && !hold) begin
// not full, perform write
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
end
end
end
always_ff @(posedge clk) begin
wr_ptr_reg <= wr_ptr_next;
wr_addr_reg <= wr_ptr_next;
if (write) begin
mem[wr_addr_reg[FIFO_AW-1:0]] <= s_axi_w;
end
if (rst) begin
wr_ptr_reg <= '0;
end
end
// Read logic
always_comb begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (store_output || !mem_read_data_valid_reg) begin
// output data not valid OR currently being transferred
if (!empty) begin
// not empty, perform read
read = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
always_ff @(posedge clk) begin
rd_ptr_reg <= rd_ptr_next;
rd_addr_reg <= rd_ptr_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
if (read) begin
mem_read_data_reg <= mem[rd_addr_reg[FIFO_AW-1:0]];
end
if (rst) begin
rd_ptr_reg <= '0;
mem_read_data_valid_reg <= 1'b0;
end
end
// Output register
always_comb begin
store_output = 1'b0;
m_axi_wvalid_next = m_axi_wvalid_reg;
if (m_axi_wr.wready || !m_axi_wr.wvalid) begin
store_output = 1'b1;
m_axi_wvalid_next = mem_read_data_valid_reg;
end
end
always_ff @(posedge clk) begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
if (store_output) begin
m_axi_w_reg <= mem_read_data_reg;
end
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
end
end
endmodule
`resetall