Files
taxi/rtl/hip/us/taxi_mmcm_frac.sv
2025-03-17 21:05:49 -07:00

333 lines
8.0 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2024-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Fractional MMCM
*/
module taxi_mmcm_frac #(
parameter MMCM_INPUT_CLK_PERIOD = 8.0,
parameter MMCM_INPUT_REF_JITTER = 0.010,
parameter MMCM_INPUT_DIV = 1,
parameter MMCM_MULT = 8,
parameter MMCM_OUTPUT_DIV = MMCM_MULT,
parameter logic PSCLK_EN = 1'b0,
parameter PSCLK_DIV = MMCM_OUTPUT_DIV,
parameter logic EXTRA_MMCM = 1'b1,
parameter MMCM2_CASC_DIV = MMCM_OUTPUT_DIV,
parameter MMCM2_INPUT_DIV = 1,
parameter MMCM2_MULT = MMCM_OUTPUT_DIV,
parameter MMCM2_OUTPUT_DIV = MMCM2_MULT,
parameter OFFSET_NUM = 1,
parameter OFFSET_DENOM = 65536
)
(
input wire input_clk,
input wire input_rst,
output wire output_clk,
output wire output_offset_clk,
output wire locked
);
localparam MMCM_OUTPUT_CLK_PERIOD = MMCM_INPUT_CLK_PERIOD*MMCM_INPUT_DIV/MMCM_MULT*MMCM_OUTPUT_DIV;
localparam MMCM2_INPUT_CLK_PERIOD = MMCM_INPUT_CLK_PERIOD*MMCM_INPUT_DIV/MMCM_MULT*MMCM2_CASC_DIV;
localparam PSCLK_DIV_INT = PSCLK_EN ? PSCLK_DIV : MMCM_OUTPUT_DIV;
// 1 phase shifter tap is 1/56th of the VCO period
// To shift the frequency by OFFSET_NUM/OFFSET_DENOM, we need to shift the VCO output
// by OFFSET_NUM VCO periods (56*OFFSET_NUM taps) every OFFSET_DENOM VCO periods.
// Since the PSCLK is divided with respect to the VCO, rescale numerator by division factor
localparam DIR = OFFSET_NUM >= 0;
localparam NUM_1 = (DIR ? OFFSET_NUM : -OFFSET_NUM)*56*PSCLK_DIV_INT;
localparam DENOM_1 = OFFSET_DENOM;
localparam MMCM_MIN_PSCLK_CYCLES = 12;
if (DENOM_1 / NUM_1 < MMCM_MIN_PSCLK_CYCLES)
$fatal(0, "Error: requested offset is too large for MMCM dynamic phase shifter");
localparam CNT_W = $clog2(DENOM_1)+1;
wire mmcm_locked;
wire mmcm2_locked;
wire mmcm_clkfb;
wire mmcm_clk_out;
wire mmcm_clk_bufg;
wire mmcm_offset_clk_out;
wire mmcm_offset_clk_bufg;
wire mmcm_ps_clk_out;
wire mmcm_ps_clk_bufg;
wire mmcm2_clkfb;
wire mmcm2_offset_clk_out;
wire mmcm2_offset_clk_bufg;
assign locked = mmcm_locked && mmcm2_locked;
assign output_clk = mmcm_clk_bufg;
assign output_offset_clk = EXTRA_MMCM ? mmcm2_offset_clk_bufg : mmcm_offset_clk_bufg;
wire ps_clk = PSCLK_EN ? mmcm_ps_clk_bufg : output_clk;
logic [CNT_W-1:0] cnt_reg = '0;
logic ps_en_reg = 1'b0;
always_ff @(posedge ps_clk) begin
ps_en_reg <= 1'b0;
if (cnt_reg + NUM_1 >= DENOM_1) begin
cnt_reg <= cnt_reg + NUM_1 - DENOM_1;
ps_en_reg <= 1'b1;
end else begin
cnt_reg <= cnt_reg + NUM_1;
end
end
MMCME3_ADV #(
// input clocks
.CLKIN1_PERIOD(MMCM_INPUT_CLK_PERIOD),
.REF_JITTER1(MMCM_INPUT_REF_JITTER),
.CLKIN2_PERIOD(0.000),
.REF_JITTER2(0.010),
// divide for PFD input
// US/US+: range 10 MHz to 500 MHz
.DIVCLK_DIVIDE(MMCM_INPUT_DIV),
// multiply for VCO output
// US: range 600 MHz to 1440 MHz
// US+: range 800 MHz to 1600 MHz
.CLKFBOUT_MULT_F(MMCM_MULT),
.CLKFBOUT_PHASE(0),
.CLKFBOUT_USE_FINE_PS("FALSE"),
// divide
.CLKOUT0_DIVIDE_F(MMCM_OUTPUT_DIV),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
.CLKOUT0_USE_FINE_PS("FALSE"),
// divide and phase shift
.CLKOUT1_DIVIDE(EXTRA_MMCM ? MMCM2_CASC_DIV : MMCM_OUTPUT_DIV),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
.CLKOUT1_USE_FINE_PS("TRUE"),
// phase shifter clock
.CLKOUT2_DIVIDE(PSCLK_EN ? PSCLK_DIV : 1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
.CLKOUT2_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
.CLKOUT3_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_USE_FINE_PS("FALSE"),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
.CLKOUT5_USE_FINE_PS("FALSE"),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
.CLKOUT6_USE_FINE_PS("FALSE"),
// no spread spectrum
.SS_EN("FALSE"),
.SS_MODE("CENTER_HIGH"),
.SS_MOD_PERIOD(10000),
.COMPENSATION("AUTO"),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// input clocks
.CLKIN1(input_clk),
.CLKIN2(1'b0),
// select CLKIN1
.CLKINSEL(1'b1),
// direct clkfb feedback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// output (no offset)
.CLKOUT0(mmcm_clk_out),
.CLKOUT0B(),
// offset output
.CLKOUT1(mmcm_offset_clk_out),
.CLKOUT1B(),
// phase shifter clock
.CLKOUT2(mmcm_ps_clk_out),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(input_rst),
// don't power down
.PWRDWN(1'b0),
// DRP
.DADDR(7'd0),
.DI(16'd0),
.DWE(1'b0),
.DEN(1'b0),
.DCLK(1'b0),
.DO(),
// dynamic phase shift
.PSINCDEC(DIR ? 1'b0 : 1'b1),
.PSEN(ps_en_reg),
.PSCLK(ps_clk),
.PSDONE(),
// locked output
.LOCKED(mmcm_locked),
// input status
.CLKINSTOPPED(),
.CLKFBSTOPPED(),
// CDDC
.CDDCREQ(1'b0),
.CDDCDONE()
);
BUFG
mmcm_clk_bufg_inst (
.I(mmcm_clk_out),
.O(mmcm_clk_bufg)
);
BUFG
mmcm_offset_clk_bufg_inst (
.I(mmcm_offset_clk_out),
.O(mmcm_offset_clk_bufg)
);
BUFG
mmcm_ps_clk_bufg_inst (
.I(mmcm_ps_clk_out),
.O(mmcm_ps_clk_bufg)
);
if (EXTRA_MMCM) begin : extra_mmcm
// MMCM instance
MMCME3_BASE #(
// 125 MHz input
.CLKIN1_PERIOD(MMCM2_INPUT_CLK_PERIOD),
.REF_JITTER1(MMCM_INPUT_REF_JITTER),
// divide for PFD input
// US/US+: range 10 MHz to 500 MHz
.DIVCLK_DIVIDE(MMCM2_INPUT_DIV),
// multiply for VCO output
// US: range 600 MHz to 1440 MHz
// US+: range 800 MHz to 1600 MHz
.CLKFBOUT_MULT_F(MMCM2_MULT),
.CLKFBOUT_PHASE(0),
// divide
.CLKOUT0_DIVIDE_F(MMCM2_OUTPUT_DIV),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// Not used
.CLKOUT1_DIVIDE(1),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
// Not used
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm2_inst (
// 125 MHz input
.CLKIN1(mmcm_offset_clk_bufg),
// direct clkfb feeback
.CLKFBIN(mmcm2_clkfb),
.CLKFBOUT(mmcm2_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(mmcm2_offset_clk_out),
.CLKOUT0B(),
// Not used
.CLKOUT1(),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(input_rst || !mmcm_locked),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm2_locked)
);
BUFG
mmcm2_offset_clk_bufg_inst (
.I(mmcm2_offset_clk_out),
.O(mmcm2_offset_clk_bufg)
);
end else begin
assign mmcm2_locked = mmcm_locked;
assign mmcm2_offset_clk_bufg = mmcm_offset_clk_bufg;
end
endmodule
`resetall