Files
taxi/rtl/axis/taxi_axis_cobs_decode.sv
Alex Forencich 9138a7a51e axis: Add COBS decoder module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-04 11:39:38 -08:00

322 lines
11 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2016-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream consistent overhead byte stuffing (COBS) decoder
*/
module taxi_axis_cobs_decode
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis
);
// check configuration
if (m_axis.DATA_W != 8 || s_axis.DATA_W != 8)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
// state register
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_SEGMENT = 2'd1,
STATE_NEXT_SEGMENT = 2'd2;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [7:0] count_reg = 8'd0, count_next;
logic suppress_zero_reg = 1'b0, suppress_zero_next;
logic [7:0] temp_tdata_reg = 8'd0, temp_tdata_next;
logic temp_tvalid_reg = 1'b0, temp_tvalid_next;
// internal datapath
logic [7:0] m_axis_tdata_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic m_axis_tuser_int;
wire m_axis_tready_int_early;
logic s_axis_tready_reg = 1'b0, s_axis_tready_next;
assign s_axis.tready = s_axis_tready_reg;
always_comb begin
state_next = STATE_IDLE;
count_next = count_reg;
suppress_zero_next = suppress_zero_reg;
temp_tdata_next = temp_tdata_reg;
temp_tvalid_next = temp_tvalid_reg;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
s_axis_tready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state
s_axis_tready_next = m_axis_tready_int_early || !temp_tvalid_reg;
// output final word
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
m_axis_tlast_int = temp_tvalid_reg;
temp_tvalid_next = temp_tvalid_reg && !m_axis_tready_int_reg;
if (s_axis.tready && s_axis.tvalid) begin
// valid input data
// skip any leading zeros
if (s_axis.tdata != 8'd0) begin
// store count value and zero suppress
count_next = s_axis.tdata-1;
suppress_zero_next = (s_axis.tdata == 8'd255);
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis.tdata == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_SEGMENT: begin
// receive segment
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis.tready && s_axis.tvalid) begin
// valid input data
// store in temp register
temp_tdata_next = s_axis.tdata;
temp_tvalid_next = 1'b1;
// move temp to output
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
// decrement count
count_next = count_reg - 1;
if (s_axis.tdata == 8'd0) begin
// got a zero byte in a frame - mark it as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else if (s_axis.LAST_EN && s_axis.tlast) begin
// end of frame
if (count_reg == 8'd1 && (!s_axis.USER_EN || !s_axis.tuser)) begin
// end of frame indication at correct time, go to idle to output final byte
state_next = STATE_IDLE;
end else begin
// end of frame indication at invalid time or tuser assert, so mark as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else if (count_reg == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end else begin
state_next = STATE_SEGMENT;
end
end
STATE_NEXT_SEGMENT: begin
// next segment
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis.tready && s_axis.tvalid) begin
// valid input data
// store zero in temp if not suppressed
temp_tdata_next = 8'd0;
temp_tvalid_next = !suppress_zero_reg;
// move temp to output
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
if (s_axis.tdata == 8'd0) begin
// got a zero byte delineating the end of the frame, so mark as such and re-sync
temp_tvalid_next = 1'b0;
m_axis_tuser_int = s_axis.tuser;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else if (s_axis.LAST_EN && s_axis.tlast) begin
if (s_axis.tdata == 8'd1 && (!s_axis.USER_EN || !s_axis.tuser)) begin
// end of frame indication at correct time, go to idle to output final byte
state_next = STATE_IDLE;
end else begin
// end of frame indication at invalid time or tuser assert, so mark as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
// otherwise, store count value and zero suppress
count_next = s_axis.tdata-1;
suppress_zero_next = (s_axis.tdata == 8'd255);
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis.tdata == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end
end else begin
state_next = STATE_NEXT_SEGMENT;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
count_reg <= count_next;
suppress_zero_reg <= suppress_zero_next;
temp_tdata_reg <= temp_tdata_next;
temp_tvalid_reg <= temp_tvalid_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
state_reg <= STATE_IDLE;
temp_tvalid_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end
end
// output datapath logic
logic [7:0] m_axis_tdata_reg = 8'd0;
logic m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
logic m_axis_tlast_reg = 1'b0;
logic m_axis_tuser_reg = 1'b0;
logic [7:0] temp_m_axis_tdata_reg = 8'd0;
logic temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
logic temp_m_axis_tlast_reg = 1'b0;
logic temp_m_axis_tuser_reg = 1'b0;
// datapath control
logic store_axis_int_to_output;
logic store_axis_int_to_temp;
logic store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = 1'b1;
assign m_axis.tstrb = m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = m_axis_tlast_reg;
assign m_axis.tid = '0;
assign m_axis.tdest = '0;
assign m_axis.tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall