Files
taxi/rtl/ptp/taxi_ptp_td_leaf.sv
Alex Forencich ad0d44616b ptp: Add PTP TD leaf clock module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-13 20:18:17 -08:00

1012 lines
32 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1fs
`default_nettype none
/*
* PTP time distribution leaf
*/
module taxi_ptp_td_leaf #
(
parameter logic TS_REL_EN = 1'b1,
parameter logic TS_TOD_EN = 1'b1,
parameter TS_FNS_W = 16,
parameter TS_REL_NS_W = 48,
parameter TS_TOD_S_W = 48,
parameter TS_REL_W = TS_REL_NS_W + TS_FNS_W,
parameter TS_TOD_W = TS_TOD_S_W + 32 + TS_FNS_W,
parameter TD_SDI_PIPELINE = 2
)
(
input wire logic clk,
input wire logic rst,
input wire logic sample_clk,
/*
* PTP clock interface
*/
input wire logic ptp_clk,
input wire logic ptp_rst,
input wire logic ptp_td_sdi,
/*
* Timestamp output
*/
output wire logic [TS_REL_W-1:0] output_ts_rel,
output wire logic output_ts_rel_step,
output wire logic [TS_TOD_W-1:0] output_ts_tod,
output wire logic output_ts_tod_step,
/*
* PPS output (ToD format only)
*/
output wire logic output_pps,
output wire logic output_pps_str,
/*
* Status
*/
output wire logic locked
);
localparam SYNC_DELAY = 32-2-TD_SDI_PIPELINE;
localparam TS_NS_W = TS_REL_NS_W < 9 ? 9 : TS_REL_NS_W;
localparam TS_TOD_NS_W = 30;
localparam PERIOD_NS_W = 8;
localparam FNS_W = 16;
localparam CMP_FNS_W = 4;
localparam SRC_FNS_W = CMP_FNS_W+8;
localparam LOG_RATE = 3;
localparam PHASE_CNT_W = LOG_RATE;
localparam PHASE_ACC_W = PHASE_CNT_W+16;
localparam LOAD_CNT_W = 8-LOG_RATE-1;
localparam LOG_SAMPLE_SYNC_RATE = 4;
localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2;
localparam LOG_PHASE_ERR_RATE = 3;
localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2;
localparam DST_SYNC_LOCK_W = 5;
localparam FREQ_LOCK_W = 5;
localparam PTP_LOCK_W = 8;
localparam TIME_ERR_INT_W = PERIOD_NS_W+FNS_W;
localparam [30:0] NS_PER_S = 31'd1_000_000_000;
// pipeline to facilitate long input path
wire ptp_td_sdi_pipe[0:TD_SDI_PIPELINE];
assign ptp_td_sdi_pipe[0] = ptp_td_sdi;
for (genvar n = 0; n < TD_SDI_PIPELINE; n = n + 1) begin : pipe_stage
(* shreg_extract = "no" *)
reg ptp_td_sdi_reg = 0;
assign ptp_td_sdi_pipe[n+1] = ptp_td_sdi_reg;
always_ff @(posedge ptp_clk) begin
ptp_td_sdi_reg <= ptp_td_sdi_pipe[n];
end
end
// deserialize data
logic [15:0] td_shift_reg = '0;
logic [4:0] bit_cnt_reg = '0;
logic td_valid_reg = 1'b0;
logic [3:0] td_index_reg = '0;
logic [3:0] td_msg_reg = '0;
logic [15:0] td_tdata_reg = '0;
logic td_tvalid_reg = 1'b0;
logic td_tlast_reg = 1'b0;
logic [7:0] td_tid_reg = '0;
logic td_sync_reg = 1'b0;
always_ff @(posedge ptp_clk) begin
td_shift_reg <= {ptp_td_sdi_pipe[TD_SDI_PIPELINE], td_shift_reg[15:1]};
td_tvalid_reg <= 1'b0;
if (bit_cnt_reg != 0) begin
bit_cnt_reg <= bit_cnt_reg - 1;
end else begin
td_valid_reg <= 1'b0;
if (td_valid_reg) begin
td_tdata_reg <= td_shift_reg;
td_tvalid_reg <= 1'b1;
td_tlast_reg <= ptp_td_sdi_pipe[TD_SDI_PIPELINE];
td_tid_reg <= {td_msg_reg, td_index_reg};
if (td_index_reg == 0) begin
td_msg_reg <= td_shift_reg[3:0];
td_tid_reg[7:4] <= td_shift_reg[3:0];
end
td_index_reg <= td_index_reg + 1;
td_sync_reg = !td_sync_reg;
end
if (ptp_td_sdi_pipe[TD_SDI_PIPELINE] == 0) begin
bit_cnt_reg <= 16;
td_valid_reg <= 1'b1;
end else begin
td_index_reg <= 0;
end
end
if (ptp_rst) begin
bit_cnt_reg <= 0;
td_valid_reg <= 1'b0;
td_tvalid_reg <= 1'b0;
end
end
// sync TD data
logic [15:0] dst_td_tdata_reg = '0;
logic dst_td_tvalid_reg = 1'b0;
logic [7:0] dst_td_tid_reg = '0;
(* shreg_extract = "no" *)
logic td_sync_sync1_reg = 1'b0;
(* shreg_extract = "no" *)
logic td_sync_sync2_reg = 1'b0;
(* shreg_extract = "no" *)
logic td_sync_sync3_reg = 1'b0;
always_ff @(posedge clk) begin
td_sync_sync1_reg <= td_sync_reg;
td_sync_sync2_reg <= td_sync_sync1_reg;
td_sync_sync3_reg <= td_sync_sync2_reg;
end
always_ff @(posedge clk) begin
dst_td_tvalid_reg <= 1'b0;
if (td_sync_sync3_reg ^ td_sync_sync2_reg) begin
dst_td_tdata_reg <= td_tdata_reg;
dst_td_tvalid_reg <= 1'b1;
dst_td_tid_reg <= td_tid_reg;
end
if (rst) begin
dst_td_tvalid_reg <= 1'b0;
end
end
// source clock and sync generation
logic [5:0] src_sync_delay_reg = '0;
logic src_load_reg = 1'b0;
logic [PHASE_CNT_W-1:0] src_phase_reg = '0;
logic src_update_reg = 1'b0;
logic src_sync_reg = 1'b0;
logic src_marker_reg = 1'b0;
logic [PERIOD_NS_W+32-1:0] src_period_reg = '0;
logic [PERIOD_NS_W+32-1:0] src_period_shadow_reg = '0;
logic [9+SRC_FNS_W-1:0] src_ns_reg = '0;
logic [9+32-1:0] src_ns_shadow_reg = '0;
always_ff @(posedge ptp_clk) begin
src_load_reg <= 1'b0;
{src_update_reg, src_phase_reg} <= src_phase_reg+1;
if (src_update_reg) begin
src_ns_reg <= src_ns_reg + (9+SRC_FNS_W)'({src_period_reg, {PHASE_CNT_W{1'b0}}} >> (32-SRC_FNS_W));
src_sync_reg <= !src_sync_reg;
end
// extract data
if (td_tvalid_reg) begin
if (td_tid_reg[3:0] == 4'd6) begin
src_ns_shadow_reg[15:0] <= td_tdata_reg;
end
if (td_tid_reg[3:0] == 4'd7) begin
src_ns_shadow_reg[31:16] <= td_tdata_reg;
end
if (td_tid_reg[3:0] == 4'd8) begin
src_ns_shadow_reg[40:32] <= td_tdata_reg[8:0];
end
if (td_tid_reg[3:0] == 4'd11) begin
src_period_shadow_reg[15:0] <= td_tdata_reg;
end
if (td_tid_reg[3:0] == 4'd12) begin
src_period_shadow_reg[31:16] <= td_tdata_reg;
end
if (td_tid_reg[3:0] == 4'd13) begin
src_period_shadow_reg[39:32] <= td_tdata_reg[7:0];
end
end
if (src_load_reg) begin
src_ns_reg <= (9+SRC_FNS_W)'(src_ns_shadow_reg >> (32-SRC_FNS_W));
src_period_reg <= src_period_shadow_reg;
src_sync_reg <= 1'b1;
src_marker_reg <= !src_marker_reg;
end
if (src_sync_delay_reg == 1) begin
src_load_reg <= 1'b1;
src_phase_reg <= 0;
end
if (src_sync_delay_reg != 0) begin
src_sync_delay_reg <= src_sync_delay_reg - 1;
end
if (td_tvalid_reg && td_tlast_reg) begin
src_sync_delay_reg <= 6'(SYNC_DELAY);
end
end
logic [PERIOD_NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next;
logic [9+CMP_FNS_W-1:0] dst_ns_capt_reg = '0;
logic [9+CMP_FNS_W-1:0] src_ns_sync_reg = '0;
logic [FNS_W-1:0] ts_fns_lsb_reg = '0, ts_fns_lsb_next;
logic [FNS_W-1:0] ts_fns_reg = '0, ts_fns_next;
logic [8:0] ts_rel_ns_lsb_reg = '0, ts_rel_ns_lsb_next;
logic [TS_NS_W-1:0] ts_rel_ns_reg = '0, ts_rel_ns_next;
logic ts_rel_step_reg = 1'b0, ts_rel_step_next;
logic [TS_TOD_S_W-1:0] ts_tod_s_reg = '0, ts_tod_s_next;
logic [TS_TOD_NS_W-1:0] ts_tod_ns_reg = '0, ts_tod_ns_next;
logic [8:0] ts_tod_offset_ns_reg = '0, ts_tod_offset_ns_next;
logic ts_tod_step_reg = 1'b0, ts_tod_step_next;
logic pps_reg = 1'b0, pps_next;
logic pps_str_reg = 1'b0, pps_str_next;
logic [PHASE_ACC_W-1:0] dst_phase_reg = '0, dst_phase_next;
logic [PHASE_ACC_W-1:0] dst_phase_inc_reg = '0, dst_phase_inc_next;
logic dst_sync_reg = 1'b0;
logic dst_update_reg = 1'b0, dst_update_next;
(* shreg_extract = "no" *)
logic src_sync_sync1_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_sync_sync2_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_sync_sync3_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_marker_sync1_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_marker_sync2_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_marker_sync3_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_sync_sample_sync1_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_sync_sample_sync2_reg = 1'b0;
(* shreg_extract = "no" *)
logic src_sync_sample_sync3_reg = 1'b0;
(* shreg_extract = "no" *)
logic dst_sync_sample_sync1_reg = 1'b0;
(* shreg_extract = "no" *)
logic dst_sync_sample_sync2_reg = 1'b0;
(* shreg_extract = "no" *)
logic dst_sync_sample_sync3_reg = 1'b0;
logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0;
logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0;
logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0;
logic sample_update_reg = 1'b0;
logic sample_update_sync1_reg = 1'b0;
logic sample_update_sync2_reg = 1'b0;
logic sample_update_sync3_reg = 1'b0;
// CDC logic
always_ff @(posedge clk) begin
src_sync_sync1_reg <= src_sync_reg;
src_sync_sync2_reg <= src_sync_sync1_reg;
src_sync_sync3_reg <= src_sync_sync2_reg;
src_marker_sync1_reg <= src_marker_reg;
src_marker_sync2_reg <= src_marker_sync1_reg;
src_marker_sync3_reg <= src_marker_sync2_reg;
end
always_ff @(posedge sample_clk) begin
src_sync_sample_sync1_reg <= src_sync_reg;
src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg;
src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg;
dst_sync_sample_sync1_reg <= dst_sync_reg;
dst_sync_sample_sync2_reg <= dst_sync_sample_sync1_reg;
dst_sync_sample_sync3_reg <= dst_sync_sample_sync2_reg;
end
logic edge_1_reg = 1'b0;
logic edge_2_reg = 1'b0;
logic [3:0] active_reg = '0;
always_ff @(posedge sample_clk) begin
// phase and frequency detector
if (dst_sync_sample_sync2_reg && !dst_sync_sample_sync3_reg) begin
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= 1'b0;
end else begin
edge_1_reg <= !edge_2_reg;
edge_2_reg <= 1'b0;
end
end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= !edge_1_reg;
end
// accumulator
sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg}));
sample_cnt_reg <= sample_cnt_reg + 1;
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
active_reg[0] <= 1'b1;
end
if (sample_cnt_reg == 0) begin
active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg};
sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg}));
sample_acc_out_reg <= sample_acc_reg;
if (active_reg != 0) begin
sample_update_reg <= !sample_update_reg;
end
end
end
always_ff @(posedge clk) begin
sample_update_sync1_reg <= sample_update_reg;
sample_update_sync2_reg <= sample_update_sync1_reg;
sample_update_sync3_reg <= sample_update_sync2_reg;
end
logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0;
logic sample_acc_sync_valid_reg = '0;
logic [PHASE_ACC_W-1:0] dst_err_int_reg = '0, dst_err_int_next;
logic [1:0] dst_ovf;
logic [DST_SYNC_LOCK_W-1:0] dst_sync_lock_count_reg = '0, dst_sync_lock_count_next;
logic dst_sync_locked_reg = 1'b0, dst_sync_locked_next;
logic dst_gain_sel_reg = '0, dst_gain_sel_next;
always_comb begin
{dst_update_next, dst_phase_next} = dst_phase_reg + dst_phase_inc_reg;
dst_phase_inc_next = dst_phase_inc_reg;
dst_err_int_next = dst_err_int_reg;
dst_sync_lock_count_next = dst_sync_lock_count_reg;
dst_sync_locked_next = dst_sync_locked_reg;
dst_gain_sel_next = dst_gain_sel_reg;
if (sample_acc_sync_valid_reg) begin
// updated sampled dst_phase error
// gain scheduling
casez (sample_acc_sync_reg[SAMPLE_ACC_W-4 +: 4])
4'b01zz: dst_gain_sel_next = 1'b1;
4'b001z: dst_gain_sel_next = 1'b1;
4'b0001: dst_gain_sel_next = 1'b1;
4'b0000: dst_gain_sel_next = 1'b0;
4'b1111: dst_gain_sel_next = 1'b0;
4'b1110: dst_gain_sel_next = 1'b1;
4'b110z: dst_gain_sel_next = 1'b1;
4'b10zz: dst_gain_sel_next = 1'b1;
default: dst_gain_sel_next = 1'b0;
endcase
// time integral of error
case (dst_gain_sel_reg)
1'd0: {dst_ovf, dst_err_int_next} = $signed({1'b0, dst_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg));
1'd1: {dst_ovf, dst_err_int_next} = $signed({1'b0, dst_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**7);
endcase
// saturate
if (dst_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dst_err_int_next = '0;
end else if (dst_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dst_err_int_next = '1;
end
// compute output
case (dst_gain_sel_reg)
1'd0: {dst_ovf, dst_phase_inc_next} = $signed({1'b0, dst_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4);
1'd1: {dst_ovf, dst_phase_inc_next} = $signed({1'b0, dst_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**11);
endcase
// saturate
if (dst_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dst_phase_inc_next = '0;
end else if (dst_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dst_phase_inc_next = '1;
end
// locked status
if (dst_gain_sel_reg == 1'd0) begin
if (&dst_sync_lock_count_reg) begin
dst_sync_locked_next = 1'b1;
end else begin
dst_sync_lock_count_next = dst_sync_lock_count_reg + 1;
end
end else begin
if (|dst_sync_lock_count_reg) begin
dst_sync_lock_count_next = dst_sync_lock_count_reg - 1;
end else begin
dst_sync_locked_next = 1'b0;
end
end
end
end
logic [LOAD_CNT_W-1:0] dst_load_cnt_reg = '0;
logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0;
logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0;
logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0;
logic phase_err_out_valid_reg = '0;
logic phase_last_src_reg = 1'b0;
logic phase_last_dst_reg = 1'b0;
logic phase_edge_1_reg = 1'b0;
logic phase_edge_2_reg = 1'b0;
logic ts_sync_valid_reg = 1'b0;
always_ff @(posedge clk) begin
dst_phase_reg <= dst_phase_next;
dst_phase_inc_reg <= dst_phase_inc_next;
dst_update_reg <= dst_update_next;
sample_acc_sync_valid_reg <= 1'b0;
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
// latch in synchronized counts from phase detector
sample_acc_sync_reg <= sample_acc_out_reg;
sample_acc_sync_valid_reg <= 1'b1;
end
if (dst_update_reg) begin
// capture local TS
dst_ns_capt_reg <= (9+CMP_FNS_W)'({ts_rel_ns_reg, ts_fns_reg} >> (FNS_W-CMP_FNS_W));
dst_sync_reg <= !dst_sync_reg;
if (dst_sync_reg) begin
dst_load_cnt_reg <= dst_load_cnt_reg + 1;
end
end
ts_sync_valid_reg <= 1'b0;
if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin
// store captured source TS
src_ns_sync_reg <= (9+CMP_FNS_W)'(src_ns_reg >> (SRC_FNS_W-CMP_FNS_W));
ts_sync_valid_reg <= 1'b1;
end
if (src_marker_sync2_reg ^ src_marker_sync3_reg) begin
dst_load_cnt_reg <= 0;
end
phase_err_out_valid_reg <= 1'b0;
if (ts_sync_valid_reg) begin
// coarse phase locking
// phase and frequency detector
phase_last_src_reg <= src_ns_sync_reg[8+CMP_FNS_W];
phase_last_dst_reg <= dst_ns_capt_reg[8+CMP_FNS_W];
if (dst_ns_capt_reg[8+CMP_FNS_W] && !phase_last_dst_reg) begin
if (src_ns_sync_reg[8+CMP_FNS_W] && !phase_last_src_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= 1'b0;
end else begin
phase_edge_1_reg <= !phase_edge_2_reg;
phase_edge_2_reg <= 1'b0;
end
end else if (src_ns_sync_reg[8+CMP_FNS_W] && !phase_last_src_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= !phase_edge_1_reg;
end
// accumulator
phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg}));
phase_err_cnt_reg <= phase_err_cnt_reg + 1;
if (phase_err_cnt_reg == 0) begin
phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg}));
phase_err_out_reg <= phase_err_acc_reg;
phase_err_out_valid_reg <= 1'b1;
end
end
dst_err_int_reg <= dst_err_int_next;
dst_sync_lock_count_reg <= dst_sync_lock_count_next;
dst_sync_locked_reg <= dst_sync_locked_next;
dst_gain_sel_reg <= dst_gain_sel_next;
if (rst) begin
dst_phase_reg <= '0;
dst_phase_inc_reg <= '0;
dst_sync_reg <= 1'b0;
dst_update_reg <= 1'b0;
dst_err_int_reg <= 0;
dst_sync_lock_count_reg <= 0;
dst_sync_locked_reg <= 1'b0;
ts_sync_valid_reg <= 1'b0;
end
end
logic dst_rel_step_shadow_reg = 1'b0, dst_rel_step_shadow_next;
logic [47:0] dst_rel_ns_shadow_reg = '0, dst_rel_ns_shadow_next;
logic dst_rel_shadow_valid_reg = '0, dst_rel_shadow_valid_next;
logic dst_tod_step_shadow_reg = 1'b0, dst_tod_step_shadow_next;
logic [29:0] dst_tod_ns_shadow_reg = '0, dst_tod_ns_shadow_next;
logic [47:0] dst_tod_s_shadow_reg = '0, dst_tod_s_shadow_next;
logic dst_tod_shadow_valid_reg = '0, dst_tod_shadow_valid_next;
logic ts_rel_diff_reg = 1'b0, ts_rel_diff_next;
logic ts_rel_diff_valid_reg = 1'b0, ts_rel_diff_valid_next;
logic [1:0] ts_rel_mismatch_cnt_reg = '0, ts_rel_mismatch_cnt_next;
logic ts_rel_load_ts_reg = 1'b0, ts_rel_load_ts_next;
logic ts_tod_diff_reg = 1'b0, ts_tod_diff_next;
logic ts_tod_diff_valid_reg = 1'b0, ts_tod_diff_valid_next;
logic [1:0] ts_tod_mismatch_cnt_reg = '0, ts_tod_mismatch_cnt_next;
logic ts_tod_load_ts_reg = 1'b0, ts_tod_load_ts_next;
logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next;
logic ts_ns_diff_valid_reg = 1'b0, ts_ns_diff_valid_next;
logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next;
logic [1:0] ptp_ovf;
logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next;
logic freq_locked_reg = 1'b0, freq_locked_next;
logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next;
logic ptp_locked_reg = 1'b0, ptp_locked_next;
logic gain_sel_reg = 0, gain_sel_next;
if (TS_REL_EN) begin
assign output_ts_rel = TS_REL_W'({ts_rel_ns_reg, ts_fns_reg, {TS_FNS_W{1'b0}}} >> FNS_W);
assign output_ts_rel_step = ts_rel_step_reg;
end else begin
assign output_ts_rel = '0;
assign output_ts_rel_step = 1'b0;
end
if (TS_TOD_EN) begin
assign output_ts_tod = TS_TOD_W'({ts_tod_s_reg, 2'b00, ts_tod_ns_reg, ts_fns_reg, {TS_FNS_W{1'b0}}} >> FNS_W);
assign output_ts_tod_step = ts_tod_step_reg;
assign output_pps = pps_reg;
assign output_pps_str = pps_str_reg;
end else begin
assign output_ts_tod = '0;
assign output_ts_tod_step = 0;
assign output_pps = 1'b0;
assign output_pps_str = 1'b0;
end
assign locked = ptp_locked_reg && freq_locked_reg && dst_sync_locked_reg;
always_comb begin
period_ns_next = period_ns_reg;
ts_fns_lsb_next = ts_fns_lsb_reg;
ts_fns_next = ts_fns_reg;
ts_rel_ns_lsb_next = ts_rel_ns_lsb_reg;
ts_rel_ns_next = ts_rel_ns_reg;
ts_rel_step_next = 1'b0;
ts_tod_s_next = ts_tod_s_reg;
ts_tod_ns_next = ts_tod_ns_reg;
ts_tod_offset_ns_next = ts_tod_offset_ns_reg;
ts_tod_step_next = 1'b0;
dst_rel_step_shadow_next = dst_rel_step_shadow_reg;
dst_rel_ns_shadow_next = dst_rel_ns_shadow_reg;
dst_rel_shadow_valid_next = dst_rel_shadow_valid_reg;
dst_tod_step_shadow_next = dst_tod_step_shadow_reg;
dst_tod_ns_shadow_next = dst_tod_ns_shadow_reg;
dst_tod_s_shadow_next = dst_tod_s_shadow_reg;
dst_tod_shadow_valid_next = dst_tod_shadow_valid_reg;
ts_rel_diff_next = ts_rel_diff_reg;
ts_rel_diff_valid_next = 1'b0;
ts_rel_mismatch_cnt_next = ts_rel_mismatch_cnt_reg;
ts_rel_load_ts_next = ts_rel_load_ts_reg;
ts_tod_diff_next = ts_tod_diff_reg;
ts_tod_diff_valid_next = 1'b0;
ts_tod_mismatch_cnt_next = ts_tod_mismatch_cnt_reg;
ts_tod_load_ts_next = ts_tod_load_ts_reg;
ts_ns_diff_next = ts_ns_diff_reg;
ts_ns_diff_valid_next = 1'b0;
time_err_int_next = time_err_int_reg;
freq_lock_count_next = freq_lock_count_reg;
freq_locked_next = freq_locked_reg;
ptp_lock_count_next = ptp_lock_count_reg;
ptp_locked_next = ptp_locked_reg;
gain_sel_next = gain_sel_reg;
pps_next = 1'b0;
pps_str_next = pps_str_reg;
// extract data
if (dst_td_tvalid_reg) begin
if (TS_TOD_EN) begin
if (dst_td_tid_reg[3:0] == 4'd1) begin
// prevent stale data from being used in time sync
dst_tod_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg == {4'd0, 4'd1}) begin
dst_tod_ns_shadow_next[15:0] = dst_td_tdata_reg;
dst_tod_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg == {4'd0, 4'd2}) begin
dst_tod_ns_shadow_next[29:16] = dst_td_tdata_reg[13:0];
dst_tod_step_shadow_next = dst_tod_step_shadow_reg | dst_td_tdata_reg[15];
dst_tod_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg == {4'd0, 4'd3}) begin
dst_tod_s_shadow_next[15:0] = dst_td_tdata_reg;
dst_tod_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg == {4'd0, 4'd4}) begin
dst_tod_s_shadow_next[31:16] = dst_td_tdata_reg;
dst_tod_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg == {4'd0, 4'd5}) begin
dst_tod_s_shadow_next[47:32] = dst_td_tdata_reg;
dst_tod_shadow_valid_next = 1'b1;
end
if (dst_td_tid_reg == {4'd1, 4'd1}) begin
ts_tod_offset_ns_next = dst_td_tdata_reg[8:0];
end
end
if (TS_REL_EN) begin
if (dst_td_tid_reg[3:0] == 4'd0) begin
dst_rel_step_shadow_next = dst_rel_step_shadow_reg | dst_td_tdata_reg[8];
end
if (dst_td_tid_reg[3:0] == 4'd8) begin
dst_rel_ns_shadow_next[15:0] = dst_td_tdata_reg;
dst_rel_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg[3:0] == 4'd9) begin
dst_rel_ns_shadow_next[31:16] = dst_td_tdata_reg;
dst_rel_shadow_valid_next = 1'b0;
end
if (dst_td_tid_reg[3:0] == 4'd10) begin
dst_rel_ns_shadow_next[47:32] = dst_td_tdata_reg;
dst_rel_shadow_valid_next = 1'b1;
end
end
end
// PTP clock
// shared fractional ns and relative timestamp least significant bits
{ts_rel_ns_lsb_next, ts_fns_lsb_next} = ({ts_rel_ns_lsb_reg, ts_fns_lsb_reg} + period_ns_reg);
ts_fns_next = ts_fns_lsb_reg;
// relative timestamp
ts_rel_ns_next[8:0] = ts_rel_ns_lsb_reg;
if (TS_REL_EN) begin
if (!ts_rel_ns_next[8] && ts_rel_ns_reg[8]) begin
ts_rel_ns_next[TS_REL_NS_W-1:9] = ts_rel_ns_reg[TS_REL_NS_W-1:9] + 1;
end
if (dst_update_reg && !dst_sync_reg && dst_rel_shadow_valid_reg && (dst_load_cnt_reg == 0)) begin
// check timestamp MSBs
if (dst_rel_step_shadow_reg || ts_rel_load_ts_reg) begin
// input stepped
ts_rel_ns_next[TS_NS_W-1:9] = dst_rel_ns_shadow_reg[TS_NS_W-1:9];
ts_rel_step_next = 1'b1;
end
ts_rel_diff_next = dst_rel_ns_shadow_reg[TS_NS_W-1:9] != ts_rel_ns_reg[TS_NS_W-1:9];
ts_rel_load_ts_next = 1'b0;
dst_rel_shadow_valid_next = 1'b0;
dst_rel_step_shadow_next = 1'b0;
ts_rel_diff_valid_next = 1'b1;
end
if (ts_rel_diff_valid_reg) begin
if (ts_rel_diff_reg) begin
if (&ts_rel_mismatch_cnt_reg) begin
ts_rel_load_ts_next = 1'b1;
ts_rel_mismatch_cnt_next = 0;
end else begin
ts_rel_mismatch_cnt_next = ts_rel_mismatch_cnt_reg + 1;
end
end else begin
ts_rel_mismatch_cnt_next = 0;
end
end
end
// absolute time-of-day timestamp
if (TS_TOD_EN) begin
ts_tod_ns_next[8:0] = ts_rel_ns_lsb_reg + ts_tod_offset_ns_reg;
if (ts_tod_ns_reg[TS_TOD_NS_W-1]) begin
pps_str_next = 1'b0;
end
if (!ts_tod_ns_next[8] && ts_tod_ns_reg[8]) begin
if (ts_tod_ns_reg >> 9 == 30'(NS_PER_S-1) >> 9) begin
ts_tod_ns_next[TS_TOD_NS_W-1:9] = 0;
ts_tod_s_next = ts_tod_s_reg + 1;
pps_next = 1'b1;
pps_str_next = 1'b1;
end else begin
ts_tod_ns_next[TS_TOD_NS_W-1:9] = ts_tod_ns_reg[TS_TOD_NS_W-1:9] + 1;
end
end
if (dst_update_reg && !dst_sync_reg && dst_tod_shadow_valid_reg && (dst_load_cnt_reg == 0)) begin
// check timestamp MSBs
if (dst_tod_step_shadow_reg || ts_tod_load_ts_reg) begin
// input stepped
ts_tod_s_next = dst_tod_s_shadow_reg;
ts_tod_ns_next[TS_TOD_NS_W-1:9] = dst_tod_ns_shadow_reg[TS_TOD_NS_W-1:9];
ts_tod_step_next = 1'b1;
end
ts_tod_diff_next = dst_tod_s_shadow_reg != ts_tod_s_reg || dst_tod_ns_shadow_reg[TS_TOD_NS_W-1:9] != ts_tod_ns_reg[TS_TOD_NS_W-1:9];
ts_tod_load_ts_next = 1'b0;
dst_tod_shadow_valid_next = 1'b0;
dst_tod_step_shadow_next = 1'b0;
ts_tod_diff_valid_next = 1'b1;
end
if (ts_tod_diff_valid_reg) begin
if (ts_tod_diff_reg) begin
if (&ts_tod_mismatch_cnt_reg) begin
ts_tod_load_ts_next = 1'b1;
ts_tod_mismatch_cnt_next = 0;
end else begin
ts_tod_mismatch_cnt_next = ts_tod_mismatch_cnt_reg + 1;
end
end else begin
ts_tod_mismatch_cnt_next = 0;
end
end
end
if (ts_sync_valid_reg) begin
// compute difference
ts_ns_diff_valid_next = freq_locked_reg;
ts_ns_diff_next = src_ns_sync_reg - dst_ns_capt_reg;
end
if (phase_err_out_valid_reg) begin
// coarse phase/frequency lock of PTP clock
if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin
if (freq_lock_count_reg != 0) begin
freq_lock_count_next = freq_lock_count_reg - 1;
end else begin
freq_locked_next = 1'b0;
end
end else begin
if (&freq_lock_count_reg) begin
freq_locked_next = 1'b1;
end else begin
freq_lock_count_next = freq_lock_count_reg + 1;
end
end
if (!freq_locked_reg) begin
ts_ns_diff_next = $signed(phase_err_out_reg) * 16 * 2**CMP_FNS_W;
ts_ns_diff_valid_next = 1'b1;
end
end
if (ts_ns_diff_valid_reg) begin
// PI control
// gain scheduling
casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5])
5'b01zzz: gain_sel_next = 1'b1;
5'b001zz: gain_sel_next = 1'b1;
5'b0001z: gain_sel_next = 1'b1;
5'b00001: gain_sel_next = 1'b1;
5'b00000: gain_sel_next = 1'b0;
5'b11111: gain_sel_next = 1'b0;
5'b11110: gain_sel_next = 1'b1;
5'b1110z: gain_sel_next = 1'b1;
5'b110zz: gain_sel_next = 1'b1;
5'b10zzz: gain_sel_next = 1'b1;
default: gain_sel_next = 1'b0;
endcase
// time integral of error
case (gain_sel_reg)
1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4);
1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
time_err_int_next = '0;
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
time_err_int_next = '1;
end
// compute output
case (gain_sel_reg)
1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + ($signed(ts_ns_diff_reg) * 2**2);
1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + ($signed(ts_ns_diff_reg) * 2**6);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
period_ns_next = '0;
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
period_ns_next = '1;
end
// adjust period if integrator is saturated
if (time_err_int_reg == 0) begin
period_ns_next = '0;
end else if (~time_err_int_reg == 0) begin
period_ns_next = '1;
end
// locked status
if (!freq_locked_reg) begin
ptp_lock_count_next = 0;
ptp_locked_next = 1'b0;
end else if (gain_sel_reg == 1'b0) begin
if (&ptp_lock_count_reg) begin
ptp_locked_next = 1'b1;
end else begin
ptp_lock_count_next = ptp_lock_count_reg + 1;
end
end else begin
if (ptp_lock_count_reg != 0) begin
ptp_lock_count_next = ptp_lock_count_reg - 1;
end else begin
ptp_locked_next = 1'b0;
end
end
end
end
always_ff @(posedge clk) begin
period_ns_reg <= period_ns_next;
ts_fns_lsb_reg <= ts_fns_lsb_next;
ts_fns_reg <= ts_fns_next;
ts_rel_ns_lsb_reg <= ts_rel_ns_lsb_next;
ts_rel_ns_reg <= ts_rel_ns_next;
ts_rel_step_reg <= ts_rel_step_next;
ts_tod_s_reg <= ts_tod_s_next;
ts_tod_ns_reg <= ts_tod_ns_next;
ts_tod_offset_ns_reg <= ts_tod_offset_ns_next;
ts_tod_step_reg <= ts_tod_step_next;
dst_rel_step_shadow_reg <= dst_rel_step_shadow_next;
dst_rel_ns_shadow_reg <= dst_rel_ns_shadow_next;
dst_rel_shadow_valid_reg <= dst_rel_shadow_valid_next;
dst_tod_step_shadow_reg <= dst_tod_step_shadow_next;
dst_tod_ns_shadow_reg <= dst_tod_ns_shadow_next;
dst_tod_s_shadow_reg <= dst_tod_s_shadow_next;
dst_tod_shadow_valid_reg <= dst_tod_shadow_valid_next;
ts_rel_diff_reg <= ts_rel_diff_next;
ts_rel_diff_valid_reg <= ts_rel_diff_valid_next;
ts_rel_mismatch_cnt_reg <= ts_rel_mismatch_cnt_next;
ts_rel_load_ts_reg <= ts_rel_load_ts_next;
ts_tod_diff_reg <= ts_tod_diff_next;
ts_tod_diff_valid_reg <= ts_tod_diff_valid_next;
ts_tod_mismatch_cnt_reg <= ts_tod_mismatch_cnt_next;
ts_tod_load_ts_reg <= ts_tod_load_ts_next;
ts_ns_diff_reg <= ts_ns_diff_next;
ts_ns_diff_valid_reg <= ts_ns_diff_valid_next;
time_err_int_reg <= time_err_int_next;
freq_lock_count_reg <= freq_lock_count_next;
freq_locked_reg <= freq_locked_next;
ptp_lock_count_reg <= ptp_lock_count_next;
ptp_locked_reg <= ptp_locked_next;
gain_sel_reg <= gain_sel_next;
pps_reg <= pps_next;
pps_str_reg <= pps_str_next;
if (rst) begin
period_ns_reg <= '0;
ts_fns_lsb_reg <= '0;
ts_fns_reg <= '0;
ts_rel_ns_lsb_reg <= '0;
ts_rel_ns_reg <= '0;
ts_rel_step_reg <= 1'b0;
ts_tod_s_reg <= '0;
ts_tod_ns_reg <= '0;
ts_tod_step_reg <= 1'b0;
dst_rel_shadow_valid_reg <= 1'b0;
pps_reg <= 1'b0;
pps_str_reg <= 1'b0;
ts_rel_diff_reg <= 1'b0;
ts_rel_diff_valid_reg <= 1'b0;
ts_rel_mismatch_cnt_reg <= '0;
ts_rel_load_ts_reg <= '0;
ts_tod_diff_reg <= 1'b0;
ts_tod_diff_valid_reg <= 1'b0;
ts_tod_mismatch_cnt_reg <= '0;
ts_tod_load_ts_reg <= '0;
ts_ns_diff_valid_reg <= 1'b0;
time_err_int_reg <= '0;
freq_lock_count_reg <= '0;
freq_locked_reg <= 1'b0;
ptp_lock_count_reg <= '0;
ptp_locked_reg <= 1'b0;
end
end
endmodule
`resetall