Files
taxi/rtl/eth/taxi_mac_ctrl_rx.sv
Alex Forencich 8d3d703656 eth: Add MAC control modules
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-08 19:59:11 -08:00

422 lines
15 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control receiver
*/
module taxi_mac_ctrl_rx #
(
parameter ID_W = 8,
parameter DEST_W = 8,
parameter USER_W = 1,
parameter logic USE_READY = 1'b0,
parameter MCF_PARAMS_SIZE = 18
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis,
/*
* MAC control frame interface
*/
output wire logic mcf_valid,
output wire logic [47:0] mcf_eth_dst,
output wire logic [47:0] mcf_eth_src,
output wire logic [15:0] mcf_eth_type,
output wire logic [15:0] mcf_opcode,
output wire logic [MCF_PARAMS_SIZE*8-1:0] mcf_params,
output wire logic [ID_W-1:0] mcf_id,
output wire logic [DEST_W-1:0] mcf_dest,
output wire logic [USER_W-1:0] mcf_user,
/*
* Configuration
*/
input wire logic [47:0] cfg_mcf_rx_eth_dst_mcast,
input wire logic cfg_mcf_rx_check_eth_dst_mcast,
input wire logic [47:0] cfg_mcf_rx_eth_dst_ucast,
input wire logic cfg_mcf_rx_check_eth_dst_ucast,
input wire logic [47:0] cfg_mcf_rx_eth_src,
input wire logic cfg_mcf_rx_check_eth_src,
input wire logic [15:0] cfg_mcf_rx_eth_type,
input wire logic [15:0] cfg_mcf_rx_opcode_lfc,
input wire logic cfg_mcf_rx_check_opcode_lfc,
input wire logic [15:0] cfg_mcf_rx_opcode_pfc,
input wire logic cfg_mcf_rx_check_opcode_pfc,
input wire logic cfg_mcf_rx_forward,
input wire logic cfg_mcf_rx_enable,
/*
* Status
*/
output wire logic stat_rx_mcf
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam BYTE_LANES = KEEP_EN ? KEEP_W : 1;
localparam HDR_SIZE = 60;
localparam CYCLE_CNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES;
localparam PTR_W = $clog2(CYCLE_CNT+1);
localparam OFFSET = HDR_SIZE % BYTE_LANES;
// check configuration
if (BYTE_LANES * 8 != DATA_W)
$fatal(0, "Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
if (MCF_PARAMS_SIZE > 44)
$fatal(0, "Error: Maximum MCF_PARAMS_SIZE is 44 bytes (instance %m)");
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
/*
MAC control frame
Field Length
Destination MAC address 6 octets [01:80:C2:00:00:01]
Source MAC address 6 octets
Ethertype 2 octets [0x8808]
Opcode 2 octets
Parameters 0-44 octets
This module manages the reception of MAC control frames. Incoming frames are
checked based on the ethertype and (optionally) MAC addresses. Matching control
frames are marked by setting tuser[0] on the data output and forwarded through
a separate interface for processing.
*/
logic read_mcf_reg = 1'b1, read_mcf_next;
logic mcf_frame_reg = 1'b0, mcf_frame_next;
logic [PTR_W-1:0] ptr_reg = 0, ptr_next;
logic s_axis_tready_reg = 1'b0, s_axis_tready_next;
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
logic mcf_valid_reg = 0, mcf_valid_next;
logic [47:0] mcf_eth_dst_reg = 0, mcf_eth_dst_next;
logic [47:0] mcf_eth_src_reg = 0, mcf_eth_src_next;
logic [15:0] mcf_eth_type_reg = 0, mcf_eth_type_next;
logic [15:0] mcf_opcode_reg = 0, mcf_opcode_next;
logic [MCF_PARAMS_SIZE*8-1:0] mcf_params_reg = 0, mcf_params_next;
logic [ID_W-1:0] mcf_id_reg = 0, mcf_id_next;
logic [DEST_W-1:0] mcf_dest_reg = 0, mcf_dest_next;
logic [USER_W-1:0] mcf_user_reg = 0, mcf_user_next;
logic stat_rx_mcf_reg = 1'b0, stat_rx_mcf_next;
assign s_axis.tready = s_axis_tready_reg;
assign mcf_valid = mcf_valid_reg;
assign mcf_eth_dst = mcf_eth_dst_reg;
assign mcf_eth_src = mcf_eth_src_reg;
assign mcf_eth_type = mcf_eth_type_reg;
assign mcf_opcode = mcf_opcode_reg;
assign mcf_params = mcf_params_reg;
assign mcf_id = mcf_id_reg;
assign mcf_dest = mcf_dest_reg;
assign mcf_user = mcf_user_reg;
assign stat_rx_mcf = stat_rx_mcf_reg;
wire mcf_eth_dst_mcast_match = mcf_eth_dst_next == cfg_mcf_rx_eth_dst_mcast;
wire mcf_eth_dst_ucast_match = mcf_eth_dst_next == cfg_mcf_rx_eth_dst_ucast;
wire mcf_eth_src_match = mcf_eth_src_next == cfg_mcf_rx_eth_src;
wire mcf_eth_type_match = mcf_eth_type_next == cfg_mcf_rx_eth_type;
wire mcf_opcode_lfc_match = mcf_opcode_next == cfg_mcf_rx_opcode_lfc;
wire mcf_opcode_pfc_match = mcf_opcode_next == cfg_mcf_rx_opcode_pfc;
wire mcf_eth_dst_match = ((mcf_eth_dst_mcast_match && cfg_mcf_rx_check_eth_dst_mcast) ||
(mcf_eth_dst_ucast_match && cfg_mcf_rx_check_eth_dst_ucast) ||
(!cfg_mcf_rx_check_eth_dst_mcast && !cfg_mcf_rx_check_eth_dst_ucast));
wire mcf_opcode_match = ((mcf_opcode_lfc_match && cfg_mcf_rx_check_opcode_lfc) ||
(mcf_opcode_pfc_match && cfg_mcf_rx_check_opcode_pfc) ||
(!cfg_mcf_rx_check_opcode_lfc && !cfg_mcf_rx_check_opcode_pfc));
wire mcf_match = (mcf_eth_dst_match &&
(mcf_eth_src_match || !cfg_mcf_rx_check_eth_src) &&
mcf_eth_type_match && mcf_opcode_match);
always_comb begin
read_mcf_next = read_mcf_reg;
mcf_frame_next = mcf_frame_reg;
ptr_next = ptr_reg;
// pass through data
m_axis_tdata_int = s_axis.tdata;
m_axis_tkeep_int = s_axis.tkeep;
m_axis_tvalid_int = s_axis.tvalid;
m_axis_tlast_int = s_axis.tlast;
m_axis_tid_int = s_axis.tid;
m_axis_tdest_int = s_axis.tdest;
m_axis_tuser_int = USER_W'(s_axis.tuser);
s_axis_tready_next = m_axis_tready_int_early || !USE_READY;
mcf_valid_next = 1'b0;
mcf_eth_dst_next = mcf_eth_dst_reg;
mcf_eth_src_next = mcf_eth_src_reg;
mcf_eth_type_next = mcf_eth_type_reg;
mcf_opcode_next = mcf_opcode_reg;
mcf_params_next = mcf_params_reg;
mcf_id_next = mcf_id_reg;
mcf_dest_next = mcf_dest_reg;
mcf_user_next = mcf_user_reg;
stat_rx_mcf_next = 1'b0;
if ((s_axis.tready || !USE_READY) && s_axis.tvalid) begin
if (read_mcf_reg) begin
ptr_next = ptr_reg + 1;
mcf_id_next = s_axis.tid;
mcf_dest_next = s_axis.tdest;
mcf_user_next = s_axis.tuser;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == PTR_W'(offset/BYTE_LANES)) begin \
field = s_axis.tdata[(offset%BYTE_LANES)*8 +: 8]; \
end
`_HEADER_FIELD_(0, mcf_eth_dst_next[5*8 +: 8])
`_HEADER_FIELD_(1, mcf_eth_dst_next[4*8 +: 8])
`_HEADER_FIELD_(2, mcf_eth_dst_next[3*8 +: 8])
`_HEADER_FIELD_(3, mcf_eth_dst_next[2*8 +: 8])
`_HEADER_FIELD_(4, mcf_eth_dst_next[1*8 +: 8])
`_HEADER_FIELD_(5, mcf_eth_dst_next[0*8 +: 8])
`_HEADER_FIELD_(6, mcf_eth_src_next[5*8 +: 8])
`_HEADER_FIELD_(7, mcf_eth_src_next[4*8 +: 8])
`_HEADER_FIELD_(8, mcf_eth_src_next[3*8 +: 8])
`_HEADER_FIELD_(9, mcf_eth_src_next[2*8 +: 8])
`_HEADER_FIELD_(10, mcf_eth_src_next[1*8 +: 8])
`_HEADER_FIELD_(11, mcf_eth_src_next[0*8 +: 8])
`_HEADER_FIELD_(12, mcf_eth_type_next[1*8 +: 8])
`_HEADER_FIELD_(13, mcf_eth_type_next[0*8 +: 8])
`_HEADER_FIELD_(14, mcf_opcode_next[1*8 +: 8])
`_HEADER_FIELD_(15, mcf_opcode_next[0*8 +: 8])
if (ptr_reg == PTR_W'(0/BYTE_LANES)) begin
// ensure params field gets cleared
mcf_params_next = 0;
end
for (integer k = 0; k < MCF_PARAMS_SIZE; k = k + 1) begin
if (ptr_reg == PTR_W'((16+k)/BYTE_LANES)) begin
mcf_params_next[k*8 +: 8] = s_axis.tdata[((16+k)%BYTE_LANES)*8 +: 8];
end
end
if (ptr_reg == PTR_W'(15/BYTE_LANES) && (!KEEP_EN || s_axis.tkeep[13%BYTE_LANES])) begin
// record match at end of opcode field
mcf_frame_next = mcf_match && cfg_mcf_rx_enable;
end
if (ptr_reg == PTR_W'((HDR_SIZE-1)/BYTE_LANES)) begin
read_mcf_next = 1'b0;
end
`undef _HEADER_FIELD_
end
if (s_axis.tlast) begin
if (s_axis.tuser[0]) begin
// frame marked invalid
end else if (mcf_frame_next) begin
if (!cfg_mcf_rx_forward) begin
// mark frame invalid
m_axis_tuser_int[0] = 1'b1;
end
// transfer out MAC control frame
mcf_valid_next = 1'b1;
stat_rx_mcf_next = 1'b1;
end
read_mcf_next = 1'b1;
mcf_frame_next = 1'b0;
ptr_next = '0;
end
end
end
always_ff @(posedge clk) begin
read_mcf_reg <= read_mcf_next;
mcf_frame_reg <= mcf_frame_next;
ptr_reg <= ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
mcf_valid_reg <= mcf_valid_next;
mcf_eth_dst_reg <= mcf_eth_dst_next;
mcf_eth_src_reg <= mcf_eth_src_next;
mcf_eth_type_reg <= mcf_eth_type_next;
mcf_opcode_reg <= mcf_opcode_next;
mcf_params_reg <= mcf_params_next;
mcf_id_reg <= mcf_id_next;
mcf_dest_reg <= mcf_dest_next;
mcf_user_reg <= mcf_user_next;
stat_rx_mcf_reg <= stat_rx_mcf_next;
if (rst) begin
read_mcf_reg <= 1'b1;
mcf_frame_reg <= 1'b0;
ptr_reg <= '0;
s_axis_tready_reg <= 1'b0;
mcf_valid_reg <= 1'b0;
stat_rx_mcf_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_W-1:0] m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] m_axis_tkeep_reg = '0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] m_axis_tid_reg = '0;
reg [DEST_W-1:0] m_axis_tdest_reg = '0;
reg [USER_W-1:0] m_axis_tuser_reg = '0;
reg [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] temp_m_axis_tid_reg = '0;
reg [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
reg [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = m_axis_tlast_reg;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || !USE_READY || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !USE_READY || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready || !USE_READY) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall