Files
taxi/example/KCU105/fpga/rtl/fpga.sv
2025-02-22 23:15:24 -08:00

627 lines
17 KiB
Systemverilog

// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga #
(
// simulation (set to avoid vendor primitives)
parameter logic SIM = 1'b0,
// vendor ("GENERIC", "XILINX", "ALTERA")
parameter string VENDOR = "XILINX",
// device family
parameter string FAMILY = "kintexu",
// SFP rate selection (0 for 1G, 1 for 10G)
parameter logic SFP_RATE = 1'b1
)
(
/*
* Clock: 125MHz LVDS
* Reset: Push button, active high
*/
input wire logic clk_125mhz_p,
input wire logic clk_125mhz_n,
input wire logic reset,
/*
* GPIO
*/
input wire logic btnu,
input wire logic btnl,
input wire logic btnd,
input wire logic btnr,
input wire logic btnc,
input wire logic [3:0] sw,
output wire logic [7:0] led,
/*
* UART: 115200 bps, 8N1
*/
input wire logic uart_rxd,
output wire logic uart_txd,
output wire logic uart_rts,
input wire logic uart_cts,
/*
* Ethernet: 1000BASE-T SGMII
*/
input wire logic phy_sgmii_rx_p,
input wire logic phy_sgmii_rx_n,
output wire logic phy_sgmii_tx_p,
output wire logic phy_sgmii_tx_n,
input wire logic phy_sgmii_clk_p,
input wire logic phy_sgmii_clk_n,
output wire logic phy_reset_n,
input wire logic phy_int_n,
/*
* Ethernet: SFP+
*/
input wire logic [1:0] sfp_rx_p,
input wire logic [1:0] sfp_rx_n,
output wire logic [1:0] sfp_tx_p,
output wire logic [1:0] sfp_tx_n,
input wire logic sfp_mgt_refclk_0_p,
input wire logic sfp_mgt_refclk_0_n,
output wire logic [1:0] sfp_tx_disable_b
);
// Clock and reset
wire clk_125mhz_ibufg;
// Internal 125 MHz clock
wire clk_125mhz_mmcm_out;
wire clk_125mhz_int;
wire rst_125mhz_int;
// Internal 62.5 MHz clock
wire clk_62mhz_mmcm_out;
wire clk_62mhz_int;
wire mmcm_rst = reset;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFGDS #(
.DIFF_TERM("FALSE"),
.IBUF_LOW_PWR("FALSE")
)
clk_125mhz_ibufg_inst (
.O (clk_125mhz_ibufg),
.I (clk_125mhz_p),
.IB (clk_125mhz_n)
);
// MMCM instance
MMCME3_BASE #(
// 125 MHz input
.CLKIN1_PERIOD(8.0),
.REF_JITTER1(0.010),
// 125 MHz input / 1 = 125 MHz PFD (range 10 MHz to 500 MHz)
.DIVCLK_DIVIDE(1),
// 125 MHz PFD * 10 = 1250 MHz VCO (range 600 MHz to 1440 MHz)
.CLKFBOUT_MULT_F(10),
.CLKFBOUT_PHASE(0),
// 1250 MHz / 10 = 125 MHz, 0 degrees
.CLKOUT0_DIVIDE_F(10),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// 1250 MHz / 20 = 62.5 MHz, 0 degrees
.CLKOUT1_DIVIDE(20),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
// Not used
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// 125 MHz input
.CLKIN1(clk_125mhz_ibufg),
// direct clkfb feeback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(clk_125mhz_mmcm_out),
.CLKOUT0B(),
// 62.5 MHz, 0 degrees
.CLKOUT1(clk_62mhz_mmcm_out),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(mmcm_rst),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm_locked)
);
BUFG
clk_125mhz_bufg_inst (
.I(clk_125mhz_mmcm_out),
.O(clk_125mhz_int)
);
BUFG
clk_62mhz_bufg_inst (
.I(clk_62mhz_mmcm_out),
.O(clk_62mhz_int)
);
taxi_sync_reset #(
.N(4)
)
sync_reset_125mhz_inst (
.clk(clk_125mhz_int),
.rst(~mmcm_locked),
.out(rst_125mhz_int)
);
// GPIO
wire btnu_int;
wire btnl_int;
wire btnd_int;
wire btnr_int;
wire btnc_int;
wire [3:0] sw_int;
taxi_debounce_switch #(
.WIDTH(9),
.N(4),
.RATE(125000)
)
debounce_switch_inst (
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
.in({btnu,
btnl,
btnd,
btnr,
btnc,
sw}),
.out({btnu_int,
btnl_int,
btnd_int,
btnr_int,
btnc_int,
sw_int})
);
wire uart_rxd_int;
wire uart_cts_int;
taxi_sync_signal #(
.WIDTH(2),
.N(2)
)
sync_signal_inst (
.clk(clk_125mhz_int),
.in({uart_rxd, uart_cts}),
.out({uart_rxd_int, uart_cts_int})
);
wire [7:0] led_int;
// SGMII interface to PHY
wire phy_gmii_clk_int;
wire phy_gmii_rst_int;
wire phy_gmii_clk_en_int;
wire [7:0] phy_gmii_txd_int;
wire phy_gmii_tx_en_int;
wire phy_gmii_tx_er_int;
wire [7:0] phy_gmii_rxd_int;
wire phy_gmii_rx_dv_int;
wire phy_gmii_rx_er_int;
wire [15:0] sgmii_status_vect;
wire sgmii_status_link_status = sgmii_status_vect[0];
wire sgmii_status_link_synchronization = sgmii_status_vect[1];
wire sgmii_status_rudi_c = sgmii_status_vect[2];
wire sgmii_status_rudi_i = sgmii_status_vect[3];
wire sgmii_status_rudi_invalid = sgmii_status_vect[4];
wire sgmii_status_rxdisperr = sgmii_status_vect[5];
wire sgmii_status_rxnotintable = sgmii_status_vect[6];
wire sgmii_status_phy_link_status = sgmii_status_vect[7];
wire [1:0] sgmii_status_remote_fault_encdg = sgmii_status_vect[9:8];
wire [1:0] sgmii_status_speed = sgmii_status_vect[11:10];
wire sgmii_status_duplex = sgmii_status_vect[12];
wire sgmii_status_remote_fault = sgmii_status_vect[13];
wire [1:0] sgmii_status_pause = sgmii_status_vect[15:14];
wire [4:0] sgmii_config_vect;
assign sgmii_config_vect[4] = 1'b1; // autonegotiation enable
assign sgmii_config_vect[3] = 1'b0; // isolate
assign sgmii_config_vect[2] = 1'b0; // power down
assign sgmii_config_vect[1] = 1'b0; // loopback enable
assign sgmii_config_vect[0] = 1'b0; // unidirectional enable
wire [15:0] sgmii_an_config_vect;
assign sgmii_an_config_vect[15] = 1'b1; // SGMII link status
assign sgmii_an_config_vect[14] = 1'b1; // SGMII Acknowledge
assign sgmii_an_config_vect[13:12] = 2'b01; // full duplex
assign sgmii_an_config_vect[11:10] = 2'b10; // SGMII speed
assign sgmii_an_config_vect[9] = 1'b0; // reserved
assign sgmii_an_config_vect[8:7] = 2'b00; // pause frames - SGMII reserved
assign sgmii_an_config_vect[6] = 1'b0; // reserved
assign sgmii_an_config_vect[5] = 1'b0; // full duplex - SGMII reserved
assign sgmii_an_config_vect[4:1] = 4'b0000; // reserved
assign sgmii_an_config_vect[0] = 1'b1; // SGMII
sgmii_pcs_pma_0
eth_pcspma (
// SGMII
.txp (phy_sgmii_tx_p),
.txn (phy_sgmii_tx_n),
.rxp (phy_sgmii_rx_p),
.rxn (phy_sgmii_rx_n),
// Ref clock from PHY
.refclk625_p (phy_sgmii_clk_p),
.refclk625_n (phy_sgmii_clk_n),
// async reset
.reset (rst_125mhz_int),
// clock and reset outputs
.clk125_out (phy_gmii_clk_int),
.clk625_out (),
.clk312_out (),
.rst_125_out (phy_gmii_rst_int),
.idelay_rdy_out (),
.mmcm_locked_out (),
// MAC clocking
.sgmii_clk_r (),
.sgmii_clk_f (),
.sgmii_clk_en (phy_gmii_clk_en_int),
// Speed control
.speed_is_10_100 (sgmii_status_speed != 2'b10),
.speed_is_100 (sgmii_status_speed == 2'b01),
// Internal GMII
.gmii_txd (phy_gmii_txd_int),
.gmii_tx_en (phy_gmii_tx_en_int),
.gmii_tx_er (phy_gmii_tx_er_int),
.gmii_rxd (phy_gmii_rxd_int),
.gmii_rx_dv (phy_gmii_rx_dv_int),
.gmii_rx_er (phy_gmii_rx_er_int),
.gmii_isolate (),
// Configuration
.configuration_vector (sgmii_config_vect),
.an_interrupt (),
.an_adv_config_vector (sgmii_an_config_vect),
.an_restart_config (1'b0),
// Status
.status_vector (sgmii_status_vect),
.signal_detect (1'b1)
);
// SFP+
wire [1:0] sfp_tx_p_int;
wire [1:0] sfp_tx_n_int;
wire sfp0_gmii_clk_int;
wire sfp0_gmii_rst_int;
wire sfp0_gmii_clk_en_int;
wire [7:0] sfp0_gmii_txd_int;
wire sfp0_gmii_tx_en_int = 1'b1;
wire sfp0_gmii_tx_er_int;
wire [7:0] sfp0_gmii_rxd_int;
wire sfp0_gmii_rx_dv_int;
wire sfp0_gmii_rx_er_int;
wire [15:0] sfp0_status_vect;
wire sfp1_gmii_clk_int;
wire sfp1_gmii_rst_int;
wire sfp1_gmii_clk_en_int;
wire [7:0] sfp1_gmii_txd_int;
wire sfp1_gmii_tx_en_int = 1'b1;
wire sfp1_gmii_tx_er_int;
wire [7:0] sfp1_gmii_rxd_int;
wire sfp1_gmii_rx_dv_int;
wire sfp1_gmii_rx_er_int;
wire [15:0] sfp1_status_vect;
if (SFP_RATE == 0) begin : sfp_phy
// 1000BASE-X
wire sfp0_gmii_gtrefclk;
wire sfp0_gmii_txuserclk;
wire sfp0_gmii_txuserclk2;
wire sfp0_gmii_rxuserclk;
wire sfp0_gmii_rxuserclk2;
wire sfp0_gmii_resetdone;
wire sfp0_gmii_pmareset;
wire sfp0_gmii_mmcm_locked;
assign sfp0_gmii_clk_int = sfp0_gmii_txuserclk2;
taxi_sync_reset #(
.N(4)
)
sync_reset_sfp0_inst (
.clk(sfp0_gmii_clk_int),
.rst(rst_125mhz_int || !sfp0_gmii_resetdone),
.out(sfp0_gmii_rst_int)
);
wire sfp0_status_link_status = sfp0_status_vect[0];
wire sfp0_status_link_synchronization = sfp0_status_vect[1];
wire sfp0_status_rudi_c = sfp0_status_vect[2];
wire sfp0_status_rudi_i = sfp0_status_vect[3];
wire sfp0_status_rudi_invalid = sfp0_status_vect[4];
wire sfp0_status_rxdisperr = sfp0_status_vect[5];
wire sfp0_status_rxnotintable = sfp0_status_vect[6];
wire sfp0_status_phy_link_status = sfp0_status_vect[7];
wire [1:0] sfp0_status_remote_fault_encdg = sfp0_status_vect[9:8];
wire [1:0] sfp0_status_speed = sfp0_status_vect[11:10];
wire sfp0_status_duplex = sfp0_status_vect[12];
wire sfp0_status_remote_fault = sfp0_status_vect[13];
wire [1:0] sfp0_status_pause = sfp0_status_vect[15:14];
wire [4:0] sfp0_config_vect;
assign sfp0_config_vect[4] = 1'b0; // autonegotiation enable
assign sfp0_config_vect[3] = 1'b0; // isolate
assign sfp0_config_vect[2] = 1'b0; // power down
assign sfp0_config_vect[1] = 1'b0; // loopback enable
assign sfp0_config_vect[0] = 1'b0; // unidirectional enable
basex_pcs_pma_0
sfp0_pcspma (
.gtrefclk_p(sfp_mgt_refclk_0_p),
.gtrefclk_n(sfp_mgt_refclk_0_n),
.gtrefclk_out(sfp0_gmii_gtrefclk),
.txn(sfp_tx_n[0]),
.txp(sfp_tx_p[0]),
.rxn(sfp_rx_n[0]),
.rxp(sfp_rx_p[0]),
.independent_clock_bufg(clk_62mhz_int),
.userclk_out(sfp0_gmii_txuserclk),
.userclk2_out(sfp0_gmii_txuserclk2),
.rxuserclk_out(sfp0_gmii_rxuserclk),
.rxuserclk2_out(sfp0_gmii_rxuserclk2),
.gtpowergood(),
.resetdone(sfp0_gmii_resetdone),
.pma_reset_out(sfp0_gmii_pmareset),
.mmcm_locked_out(sfp0_gmii_mmcm_locked),
.gmii_txd(sfp0_gmii_txd_int),
.gmii_tx_en(sfp0_gmii_tx_en_int),
.gmii_tx_er(sfp0_gmii_tx_er_int),
.gmii_rxd(sfp0_gmii_rxd_int),
.gmii_rx_dv(sfp0_gmii_rx_dv_int),
.gmii_rx_er(sfp0_gmii_rx_er_int),
.gmii_isolate(),
.configuration_vector(sfp0_config_vect),
.status_vector(sfp0_status_vect),
.reset(rst_125mhz_int),
.signal_detect(1'b1)
);
wire sfp1_gmii_txuserclk2 = sfp0_gmii_txuserclk2;
wire sfp1_gmii_resetdone;
assign sfp1_gmii_clk_int = sfp1_gmii_txuserclk2;
taxi_sync_reset #(
.N(4)
)
sync_reset_sfp1_inst (
.clk(sfp1_gmii_clk_int),
.rst(rst_125mhz_int || !sfp1_gmii_resetdone),
.out(sfp1_gmii_rst_int)
);
wire sfp1_status_link_status = sfp1_status_vect[0];
wire sfp1_status_link_synchronization = sfp1_status_vect[1];
wire sfp1_status_rudi_c = sfp1_status_vect[2];
wire sfp1_status_rudi_i = sfp1_status_vect[3];
wire sfp1_status_rudi_invalid = sfp1_status_vect[4];
wire sfp1_status_rxdisperr = sfp1_status_vect[5];
wire sfp1_status_rxnotintable = sfp1_status_vect[6];
wire sfp1_status_phy_link_status = sfp1_status_vect[7];
wire [1:0] sfp1_status_remote_fault_encdg = sfp1_status_vect[9:8];
wire [1:0] sfp1_status_speed = sfp1_status_vect[11:10];
wire sfp1_status_duplex = sfp1_status_vect[12];
wire sfp1_status_remote_fault = sfp1_status_vect[13];
wire [1:0] sfp1_status_pause = sfp1_status_vect[15:14];
wire [4:0] sfp1_config_vect;
assign sfp1_config_vect[4] = 1'b0; // autonegotiation enable
assign sfp1_config_vect[3] = 1'b0; // isolate
assign sfp1_config_vect[2] = 1'b0; // power down
assign sfp1_config_vect[1] = 1'b0; // loopback enable
assign sfp1_config_vect[0] = 1'b0; // unidirectional enable
basex_pcs_pma_1
sfp1_pcspma (
.gtrefclk(sfp0_gmii_gtrefclk),
.txn(sfp_tx_n[1]),
.txp(sfp_tx_p[1]),
.rxn(sfp_rx_n[1]),
.rxp(sfp_rx_p[1]),
.independent_clock_bufg(clk_62mhz_int),
.txoutclk(),
.gtpowergood(),
.rxoutclk(),
.resetdone(sfp1_gmii_resetdone),
.cplllock(),
.mmcm_reset(),
.userclk(sfp0_gmii_txuserclk),
.userclk2(sfp0_gmii_txuserclk2),
.pma_reset(sfp0_gmii_pmareset),
.mmcm_locked(sfp0_gmii_mmcm_locked),
.rxuserclk(sfp0_gmii_txuserclk),
.rxuserclk2(sfp0_gmii_txuserclk2),
.gmii_txd(sfp1_gmii_txd_int),
.gmii_tx_en(sfp1_gmii_tx_en_int),
.gmii_tx_er(sfp1_gmii_tx_er_int),
.gmii_rxd(sfp1_gmii_rxd_int),
.gmii_rx_dv(sfp1_gmii_rx_dv_int),
.gmii_rx_er(sfp1_gmii_rx_er_int),
.gmii_isolate(),
.configuration_vector(sfp1_config_vect),
.status_vector(sfp1_status_vect),
.reset(rst_125mhz_int),
.signal_detect(1'b1)
);
end else begin
// 10GBASE-R
assign sfp_tx_p = sfp_tx_p_int;
assign sfp_tx_n = sfp_tx_n_int;
end
// SGMII interface debug:
// SW12:1 (sw[3]) off for payload byte, on for status vector
// SW12:2 (sw[2]) off for BASE-T port (SGMII), on for SFP
// SW12:3 (sw[1]) off for SFP0, on for SFP1
// SW12:4 (sw[0]) off for LSB of status vector, on for MSB
wire [15:0] sel_sv = sw[2] ? (sw[1] ? sfp1_status_vect : sfp0_status_vect) : sgmii_status_vect;
assign led = sw[3] ? (sw[0] ? sel_sv[15:8] : sel_sv[7:0]) : led_int;
fpga_core #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY),
.SFP_RATE(SFP_RATE)
)
core_inst (
/*
* Clock: 125MHz
* Synchronous reset
*/
.clk(clk_125mhz_int),
.rst(rst_125mhz_int),
/*
* GPIO
*/
.btnu(btnu_int),
.btnl(btnl_int),
.btnd(btnd_int),
.btnr(btnr_int),
.btnc(btnc_int),
.sw(sw_int),
.led(led_int),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
.uart_rts(uart_rts),
.uart_cts(uart_cts_int),
/*
* Ethernet: 1000BASE-T SGMII
*/
.phy_gmii_clk(phy_gmii_clk_int),
.phy_gmii_rst(phy_gmii_rst_int),
.phy_gmii_clk_en(phy_gmii_clk_en_int),
.phy_gmii_rxd(phy_gmii_rxd_int),
.phy_gmii_rx_dv(phy_gmii_rx_dv_int),
.phy_gmii_rx_er(phy_gmii_rx_er_int),
.phy_gmii_txd(phy_gmii_txd_int),
.phy_gmii_tx_en(phy_gmii_tx_en_int),
.phy_gmii_tx_er(phy_gmii_tx_er_int),
.phy_reset_n(phy_reset_n),
.phy_int_n(phy_int_n),
/*
* Ethernet: SFP+
*/
.sfp_rx_p(sfp_rx_p),
.sfp_rx_n(sfp_rx_n),
.sfp_tx_p(sfp_tx_p_int),
.sfp_tx_n(sfp_tx_n_int),
.sfp_mgt_refclk_0_p(sfp_mgt_refclk_0_p),
.sfp_mgt_refclk_0_n(sfp_mgt_refclk_0_n),
.sfp0_gmii_clk(sfp0_gmii_clk_int),
.sfp0_gmii_rst(sfp0_gmii_rst_int),
.sfp0_gmii_clk_en(sfp0_gmii_clk_en_int),
.sfp0_gmii_rxd(sfp0_gmii_rxd_int),
.sfp0_gmii_rx_dv(sfp0_gmii_rx_dv_int),
.sfp0_gmii_rx_er(sfp0_gmii_rx_er_int),
.sfp0_gmii_txd(sfp0_gmii_txd_int),
.sfp0_gmii_tx_en(sfp0_gmii_tx_en_int),
.sfp0_gmii_tx_er(sfp0_gmii_tx_er_int),
.sfp1_gmii_clk(sfp1_gmii_clk_int),
.sfp1_gmii_rst(sfp1_gmii_rst_int),
.sfp1_gmii_clk_en(sfp1_gmii_clk_en_int),
.sfp1_gmii_rxd(sfp1_gmii_rxd_int),
.sfp1_gmii_rx_dv(sfp1_gmii_rx_dv_int),
.sfp1_gmii_rx_er(sfp1_gmii_rx_er_int),
.sfp1_gmii_txd(sfp1_gmii_txd_int),
.sfp1_gmii_tx_en(sfp1_gmii_tx_en_int),
.sfp1_gmii_tx_er(sfp1_gmii_tx_er_int),
.sfp_tx_disable_b(sfp_tx_disable_b)
);
endmodule
`resetall