Files
taxi/example/VCU118/fpga/rtl/fpga_core.sv
Alex Forencich cb04b84e18 example/VCU118: Add example design for VCU118
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-03-07 00:29:17 -08:00

688 lines
18 KiB
Systemverilog

// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA core logic
*/
module fpga_core #
(
parameter logic SIM = 1'b0,
parameter string VENDOR = "XILINX",
parameter string FAMILY = "virtexuplus"
)
(
/*
* Clock: 125MHz
* Synchronous reset
*/
input wire logic clk_125mhz,
input wire logic rst_125mhz,
/*
* GPIO
*/
input wire logic btnu,
input wire logic btnl,
input wire logic btnd,
input wire logic btnr,
input wire logic btnc,
input wire logic [3:0] sw,
output wire logic [7:0] led,
/*
* UART: 115200 bps, 8N1
*/
input wire logic uart_rxd,
output wire logic uart_txd,
output wire logic uart_rts,
input wire logic uart_cts,
/*
* Ethernet: 1000BASE-T SGMII
*/
input wire logic phy_gmii_clk,
input wire logic phy_gmii_rst,
input wire logic phy_gmii_clk_en,
input wire logic [7:0] phy_gmii_rxd,
input wire logic phy_gmii_rx_dv,
input wire logic phy_gmii_rx_er,
output wire logic [7:0] phy_gmii_txd,
output wire logic phy_gmii_tx_en,
output wire logic phy_gmii_tx_er,
output wire logic phy_reset_n,
input wire logic phy_int_n,
input wire logic phy_mdio_i,
output wire logic phy_mdio_o,
output wire logic phy_mdio_t,
output wire logic phy_mdc,
/*
* Ethernet: QSFP28
*/
input wire logic [3:0] qsfp1_rx_p,
input wire logic [3:0] qsfp1_rx_n,
output wire logic [3:0] qsfp1_tx_p,
output wire logic [3:0] qsfp1_tx_n,
input wire logic qsfp1_mgt_refclk_0_p,
input wire logic qsfp1_mgt_refclk_0_n,
// input wire logic qsfp1_mgt_refclk_1_p,
// input wire logic qsfp1_mgt_refclk_1_n,
// output wire logic qsfp1_recclk_p,
// output wire logic qsfp1_recclk_n,
output wire logic qsfp1_modsell,
output wire logic qsfp1_resetl,
input wire logic qsfp1_modprsl,
input wire logic qsfp1_intl,
output wire logic qsfp1_lpmode,
input wire logic [3:0] qsfp2_rx_p,
input wire logic [3:0] qsfp2_rx_n,
output wire logic [3:0] qsfp2_tx_p,
output wire logic [3:0] qsfp2_tx_n,
// input wire logic qsfp2_mgt_refclk_0_p,
// input wire logic qsfp2_mgt_refclk_0_n,
// input wire logic qsfp2_mgt_refclk_1_p,
// input wire logic qsfp2_mgt_refclk_1_n,
// output wire logic qsfp2_recclk_p,
// output wire logic qsfp2_recclk_n,
output wire logic qsfp2_modsell,
output wire logic qsfp2_resetl,
input wire logic qsfp2_modprsl,
input wire logic qsfp2_intl,
output wire logic qsfp2_lpmode
);
// assign led = 8'(sw);
// UART
assign uart_rts = 0;
taxi_axis_if #(.DATA_W(8)) axis_uart();
taxi_uart
uut (
.clk(clk_125mhz),
.rst(rst_125mhz),
/*
* AXI4-Stream input (sink)
*/
.s_axis_tx(axis_uart),
/*
* AXI4-Stream output (source)
*/
.m_axis_rx(axis_uart),
/*
* UART interface
*/
.rxd(uart_rxd),
.txd(uart_txd),
/*
* Status
*/
.tx_busy(),
.rx_busy(),
.rx_overrun_error(),
.rx_frame_error(),
/*
* Configuration
*/
.prescale(16'(125000000/115200/8))
);
// BASE-T PHY
assign phy_reset_n = !rst_125mhz;
taxi_axis_if #(.DATA_W(8), .ID_W(8)) axis_eth();
taxi_axis_if #(.DATA_W(96), .KEEP_W(1), .ID_W(8)) axis_tx_cpl();
taxi_eth_mac_1g_fifo #(
.PADDING_EN(1),
.MIN_FRAME_LEN(64),
.TX_FIFO_DEPTH(16384),
.TX_FRAME_FIFO(1),
.RX_FIFO_DEPTH(16384),
.RX_FRAME_FIFO(1)
)
eth_mac_inst (
.rx_clk(phy_gmii_clk),
.rx_rst(phy_gmii_rst),
.tx_clk(phy_gmii_clk),
.tx_rst(phy_gmii_rst),
.logic_clk(clk_125mhz),
.logic_rst(rst_125mhz),
/*
* Transmit interface (AXI stream)
*/
.s_axis_tx(axis_eth),
.m_axis_tx_cpl(axis_tx_cpl),
/*
* Receive interface (AXI stream)
*/
.m_axis_rx(axis_eth),
/*
* GMII interface
*/
.gmii_rxd(phy_gmii_rxd),
.gmii_rx_dv(phy_gmii_rx_dv),
.gmii_rx_er(phy_gmii_rx_er),
.gmii_txd(phy_gmii_txd),
.gmii_tx_en(phy_gmii_tx_en),
.gmii_tx_er(phy_gmii_tx_er),
/*
* Control
*/
.rx_clk_enable(phy_gmii_clk_en),
.tx_clk_enable(phy_gmii_clk_en),
.rx_mii_select(1'b0),
.tx_mii_select(1'b0),
/*
* Status
*/
.tx_error_underflow(),
.tx_fifo_overflow(),
.tx_fifo_bad_frame(),
.tx_fifo_good_frame(),
.rx_error_bad_frame(),
.rx_error_bad_fcs(),
.rx_fifo_overflow(),
.rx_fifo_bad_frame(),
.rx_fifo_good_frame(),
/*
* Configuration
*/
.cfg_ifg(8'd12),
.cfg_tx_enable(1'b1),
.cfg_rx_enable(1'b1)
);
// PHY MDIO init
reg [19:0] delay_reg = '1;
reg [1:0] mdio_cmd_st_reg = 2'b01; // clause 22
reg [1:0] mdio_cmd_op_reg = 2'b01; // write
reg [4:0] mdio_cmd_phy_addr_reg = 5'h03;
reg [4:0] mdio_cmd_reg_addr_reg = 5'h00;
reg [15:0] mdio_cmd_data_reg = '0;
reg mdio_cmd_valid_reg = 1'b0;
wire mdio_cmd_ready;
taxi_axis_if #(.DATA_W(32)) axis_mdio_cmd();
taxi_axis_if #(.DATA_W(16)) axis_mdio_rd_data();
assign axis_mdio_cmd.tdata = {mdio_cmd_st_reg, mdio_cmd_op_reg, mdio_cmd_phy_addr_reg, mdio_cmd_reg_addr_reg, 2'b10, mdio_cmd_data_reg};
assign axis_mdio_cmd.tvalid = mdio_cmd_valid_reg;
assign mdio_cmd_ready = axis_mdio_cmd.tready;
assign axis_mdio_rd_data.tready = 1'b1;
reg [3:0] state_reg = '0;
always_ff @(posedge clk_125mhz) begin
mdio_cmd_valid_reg <= mdio_cmd_valid_reg && !mdio_cmd_ready;
if (delay_reg != 0) begin
delay_reg <= delay_reg - 1;
end else if (mdio_cmd_valid_reg) begin
// wait for ready
state_reg <= state_reg;
end else begin
case (state_reg)
// set SGMII autonegotiation timer to 11 ms
// write 0x0070 to CFG4 (0x0031)
4'd0: begin
// write to REGCR to load address
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h001F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd1;
end
4'd1: begin
// write address of CFG4 to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h0031;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd2;
end
4'd2: begin
// write to REGCR to load data
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h401F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd3;
end
4'd3: begin
// write data for CFG4 to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h0070;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd4;
end
// enable SGMII clock output
// write 0x4000 to SGMIICTL1 (0x00D3)
4'd4: begin
// write to REGCR to load address
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h001F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd5;
end
4'd5: begin
// write address of SGMIICTL1 to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h00D3;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd6;
end
4'd6: begin
// write to REGCR to load data
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h401F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd7;
end
4'd7: begin
// write data for SGMIICTL1 to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h4000;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd8;
end
// enable 10Mbps operation
// write 0x0015 to 10M_SGMII_CFG (0x016F)
4'd8: begin
// write to REGCR to load address
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h001F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd9;
end
4'd9: begin
// write address of 10M_SGMII_CFG to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h016F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd10;
end
4'd10: begin
// write to REGCR to load data
mdio_cmd_reg_addr_reg <= 5'h0D;
mdio_cmd_data_reg <= 16'h401F;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd11;
end
4'd11: begin
// write data for 10M_SGMII_CFG to ADDAR
mdio_cmd_reg_addr_reg <= 5'h0E;
mdio_cmd_data_reg <= 16'h0015;
mdio_cmd_valid_reg <= 1'b1;
state_reg <= 4'd12;
end
4'd12: begin
// done
state_reg <= 4'd12;
end
default: begin
// go to idle
state_reg <= 4'd0;
end
endcase
end
if (rst_125mhz) begin
state_reg <= '0;
delay_reg <= SIM ? 100 : '1;
mdio_cmd_valid_reg <= 1'b0;
end
end
taxi_mdio_master
mdio_master_inst (
.clk(clk_125mhz),
.rst(rst_125mhz),
.s_axis_cmd(axis_mdio_cmd),
.m_axis_rd_data(axis_mdio_rd_data),
.mdc_o(phy_mdc),
.mdio_i(phy_mdio_i),
.mdio_o(phy_mdio_o),
.mdio_t(phy_mdio_t),
.busy(),
.prescale(8'd3)
);
// QSFP28
assign qsfp1_modsell = 1'b0;
assign qsfp1_resetl = 1'b1;
assign qsfp1_lpmode = 1'b0;
assign qsfp2_modsell = 1'b0;
assign qsfp2_resetl = 1'b1;
assign qsfp2_lpmode = 1'b0;
wire [7:0] qsfp_tx_clk;
wire [7:0] qsfp_tx_rst;
wire [7:0] qsfp_rx_clk;
wire [7:0] qsfp_rx_rst;
wire [7:0] qsfp_rx_status;
assign led = qsfp_rx_status;
wire [1:0] qsfp_gtpowergood;
wire qsfp1_mgt_refclk_0;
wire qsfp1_mgt_refclk_0_int;
wire qsfp1_mgt_refclk_0_bufg;
wire qsfp_rst;
taxi_axis_if #(.DATA_W(64), .ID_W(8)) axis_qsfp_tx[7:0]();
taxi_axis_if #(.DATA_W(96), .KEEP_W(1), .ID_W(8)) axis_qsfp_tx_cpl[7:0]();
taxi_axis_if #(.DATA_W(64), .ID_W(8)) axis_qsfp_rx[7:0]();
if (SIM) begin
assign qsfp1_mgt_refclk_0 = qsfp1_mgt_refclk_0_p;
assign qsfp1_mgt_refclk_0_int = qsfp1_mgt_refclk_0_p;
assign qsfp1_mgt_refclk_0_bufg = qsfp1_mgt_refclk_0_int;
end else begin
IBUFDS_GTE4 ibufds_gte4_qsfp1_mgt_refclk_0_inst (
.I (qsfp1_mgt_refclk_0_p),
.IB (qsfp1_mgt_refclk_0_n),
.CEB (1'b0),
.O (qsfp1_mgt_refclk_0),
.ODIV2 (qsfp1_mgt_refclk_0_int)
);
BUFG_GT bufg_gt_qsfp1_mgt_refclk_0_inst (
.CE (&qsfp_gtpowergood),
.CEMASK (1'b1),
.CLR (1'b0),
.CLRMASK (1'b1),
.DIV (3'd0),
.I (qsfp1_mgt_refclk_0_int),
.O (qsfp1_mgt_refclk_0_bufg)
);
end
taxi_sync_reset #(
.N(4)
)
qsfp_sync_reset_inst (
.clk(qsfp1_mgt_refclk_0_bufg),
.rst(rst_125mhz),
.out(qsfp_rst)
);
wire [7:0] qsfp_tx_p;
wire [7:0] qsfp_tx_n;
wire [7:0] qsfp_rx_p = {qsfp2_rx_p, qsfp1_rx_p};
wire [7:0] qsfp_rx_n = {qsfp2_rx_n, qsfp1_rx_n};
assign qsfp1_tx_p = qsfp_tx_p[3:0];
assign qsfp1_tx_n = qsfp_tx_n[3:0];
assign qsfp2_tx_p = qsfp_tx_p[7:4];
assign qsfp2_tx_n = qsfp_tx_n[7:4];
for (genvar n = 0; n < 2; n = n + 1) begin : gty_quad
localparam CNT = 4;
taxi_eth_mac_25g_us #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY),
.CNT(4),
// GT type
.GT_TYPE("GTY"),
// PHY parameters
.PADDING_EN(1'b1),
.DIC_EN(1'b1),
.MIN_FRAME_LEN(64),
.PTP_TS_EN(1'b0),
.PTP_TS_FMT_TOD(1'b1),
.PTP_TS_W(96),
.PRBS31_EN(1'b0),
.TX_SERDES_PIPELINE(1),
.RX_SERDES_PIPELINE(1),
.COUNT_125US(125000/6.4)
)
mac_inst (
.xcvr_ctrl_clk(clk_125mhz),
.xcvr_ctrl_rst(qsfp_rst),
/*
* Common
*/
.xcvr_gtpowergood_out(qsfp_gtpowergood[n]),
.xcvr_gtrefclk00_in(qsfp1_mgt_refclk_0),
.xcvr_qpll0lock_out(),
.xcvr_qpll0clk_out(),
.xcvr_qpll0refclk_out(),
/*
* Serial data
*/
.xcvr_txp(qsfp_tx_p[n*CNT +: CNT]),
.xcvr_txn(qsfp_tx_n[n*CNT +: CNT]),
.xcvr_rxp(qsfp_rx_p[n*CNT +: CNT]),
.xcvr_rxn(qsfp_rx_n[n*CNT +: CNT]),
/*
* MAC clocks
*/
.rx_clk(qsfp_rx_clk[n*CNT +: CNT]),
.rx_rst_in('0),
.rx_rst_out(qsfp_rx_rst[n*CNT +: CNT]),
.tx_clk(qsfp_tx_clk[n*CNT +: CNT]),
.tx_rst_in('0),
.tx_rst_out(qsfp_tx_rst[n*CNT +: CNT]),
.ptp_sample_clk('0),
/*
* Transmit interface (AXI stream)
*/
.s_axis_tx(axis_qsfp_tx[n*CNT +: CNT]),
.m_axis_tx_cpl(axis_qsfp_tx_cpl[n*CNT +: CNT]),
/*
* Receive interface (AXI stream)
*/
.m_axis_rx(axis_qsfp_rx[n*CNT +: CNT]),
/*
* PTP clock
*/
.tx_ptp_ts('0),
.tx_ptp_ts_step('0),
.rx_ptp_ts('0),
.rx_ptp_ts_step('0),
/*
* Link-level Flow Control (LFC) (IEEE 802.3 annex 31B PAUSE)
*/
.tx_lfc_req('0),
.tx_lfc_resend('0),
.rx_lfc_en('0),
.rx_lfc_req(),
.rx_lfc_ack('0),
/*
* Priority Flow Control (PFC) (IEEE 802.3 annex 31D PFC)
*/
.tx_pfc_req('0),
.tx_pfc_resend('0),
.rx_pfc_en('0),
.rx_pfc_req(),
.rx_pfc_ack('0),
/*
* Pause interface
*/
.tx_lfc_pause_en('0),
.tx_pause_req('0),
.tx_pause_ack(),
/*
* Status
*/
.tx_start_packet(),
.tx_error_underflow(),
.rx_start_packet(),
.rx_error_count(),
.rx_error_bad_frame(),
.rx_error_bad_fcs(),
.rx_bad_block(),
.rx_sequence_error(),
.rx_block_lock(),
.rx_high_ber(),
.rx_status(qsfp_rx_status[n*CNT +: CNT]),
.stat_tx_mcf(),
.stat_rx_mcf(),
.stat_tx_lfc_pkt(),
.stat_tx_lfc_xon(),
.stat_tx_lfc_xoff(),
.stat_tx_lfc_paused(),
.stat_tx_pfc_pkt(),
.stat_tx_pfc_xon(),
.stat_tx_pfc_xoff(),
.stat_tx_pfc_paused(),
.stat_rx_lfc_pkt(),
.stat_rx_lfc_xon(),
.stat_rx_lfc_xoff(),
.stat_rx_lfc_paused(),
.stat_rx_pfc_pkt(),
.stat_rx_pfc_xon(),
.stat_rx_pfc_xoff(),
.stat_rx_pfc_paused(),
/*
* Configuration
*/
.cfg_ifg('{CNT{8'd12}}),
.cfg_tx_enable('1),
.cfg_rx_enable('1),
.cfg_tx_prbs31_enable('0),
.cfg_rx_prbs31_enable('0),
.cfg_mcf_rx_eth_dst_mcast('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_mcf_rx_check_eth_dst_mcast('1),
.cfg_mcf_rx_eth_dst_ucast('{CNT{48'd0}}),
.cfg_mcf_rx_check_eth_dst_ucast('0),
.cfg_mcf_rx_eth_src('{CNT{48'd0}}),
.cfg_mcf_rx_check_eth_src('0),
.cfg_mcf_rx_eth_type('{CNT{16'h8808}}),
.cfg_mcf_rx_opcode_lfc('{CNT{16'h0001}}),
.cfg_mcf_rx_check_opcode_lfc('1),
.cfg_mcf_rx_opcode_pfc('{CNT{16'h0101}}),
.cfg_mcf_rx_check_opcode_pfc('1),
.cfg_mcf_rx_forward('0),
.cfg_mcf_rx_enable('0),
.cfg_tx_lfc_eth_dst('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_tx_lfc_eth_src('{CNT{48'h80_23_31_43_54_4C}}),
.cfg_tx_lfc_eth_type('{CNT{16'h8808}}),
.cfg_tx_lfc_opcode('{CNT{16'h0001}}),
.cfg_tx_lfc_en('0),
.cfg_tx_lfc_quanta('{CNT{16'hffff}}),
.cfg_tx_lfc_refresh('{CNT{16'h7fff}}),
.cfg_tx_pfc_eth_dst('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_tx_pfc_eth_src('{CNT{48'h80_23_31_43_54_4C}}),
.cfg_tx_pfc_eth_type('{CNT{16'h8808}}),
.cfg_tx_pfc_opcode('{CNT{16'h0101}}),
.cfg_tx_pfc_en('0),
.cfg_tx_pfc_quanta('{CNT{'{8{16'hffff}}}}),
.cfg_tx_pfc_refresh('{CNT{'{8{16'h7fff}}}}),
.cfg_rx_lfc_opcode('{CNT{16'h0001}}),
.cfg_rx_lfc_en('0),
.cfg_rx_pfc_opcode('{CNT{16'h0101}}),
.cfg_rx_pfc_en('0)
);
end
for (genvar n = 0; n < 8; n = n + 1) begin : qsfp_ch
taxi_axis_async_fifo #(
.DEPTH(16384),
.RAM_PIPELINE(2),
.FRAME_FIFO(1),
.USER_BAD_FRAME_VALUE(1'b1),
.USER_BAD_FRAME_MASK(1'b1),
.DROP_OVERSIZE_FRAME(1),
.DROP_BAD_FRAME(1),
.DROP_WHEN_FULL(1)
)
ch_fifo (
/*
* AXI4-Stream input (sink)
*/
.s_clk(qsfp_rx_clk[n]),
.s_rst(qsfp_rx_rst[n]),
.s_axis(axis_qsfp_rx[n]),
/*
* AXI4-Stream output (source)
*/
.m_clk(qsfp_tx_clk[n]),
.m_rst(qsfp_tx_rst[n]),
.m_axis(axis_qsfp_tx[n]),
/*
* Pause
*/
.s_pause_req(1'b0),
.s_pause_ack(),
.m_pause_req(1'b0),
.m_pause_ack(),
/*
* Status
*/
.s_status_depth(),
.s_status_depth_commit(),
.s_status_overflow(),
.s_status_bad_frame(),
.s_status_good_frame(),
.m_status_depth(),
.m_status_depth_commit(),
.m_status_overflow(),
.m_status_bad_frame(),
.m_status_good_frame()
);
end
endmodule
`resetall