Files
taxi/rtl/axis/taxi_axis_mux.sv
2025-02-27 13:28:02 -08:00

273 lines
8.8 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream multiplexer
*/
module taxi_axis_mux #
(
// Number of AXI stream inputs
parameter S_COUNT = 4
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream inputs (sinks)
*/
taxi_axis_if.snk s_axis[S_COUNT],
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis,
/*
* Control
*/
input wire logic enable,
input wire logic [$clog2(S_COUNT)-1:0] select
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis.DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis.USER_W;
// check configuration
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
parameter CL_S_COUNT = $clog2(S_COUNT);
reg [CL_S_COUNT-1:0] select_reg = 2'd0, select_next;
reg frame_reg = 1'b0, frame_next;
reg [S_COUNT-1:0] s_axis_tready_reg = 0, s_axis_tready_next;
// internal datapath
reg [DATA_W-1:0] m_axis_tdata_int;
reg [KEEP_W-1:0] m_axis_tkeep_int;
reg [KEEP_W-1:0] m_axis_tstrb_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_W-1:0] m_axis_tid_int;
reg [DEST_W-1:0] m_axis_tdest_int;
reg [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
// unpack interface array
wire [S_COUNT-1:0][DATA_W-1:0] s_axis_tdata;
wire [S_COUNT-1:0][KEEP_W-1:0] s_axis_tkeep;
wire [S_COUNT-1:0][KEEP_W-1:0] s_axis_tstrb;
wire [S_COUNT-1:0] s_axis_tvalid;
wire [S_COUNT-1:0] s_axis_tready;
wire [S_COUNT-1:0] s_axis_tlast;
wire [S_COUNT-1:0][ID_W-1:0] s_axis_tid;
wire [S_COUNT-1:0][DEST_W-1:0] s_axis_tdest;
wire [S_COUNT-1:0][USER_W-1:0] s_axis_tuser;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axis_tdata[n] = s_axis[n].tdata;
assign s_axis_tkeep[n] = s_axis[n].tkeep;
assign s_axis_tstrb[n] = s_axis[n].tstrb;
assign s_axis_tvalid[n] = s_axis[n].tvalid;
assign s_axis[n].tready = s_axis_tready[n];
assign s_axis_tlast[n] = s_axis[n].tlast;
assign s_axis_tid[n] = s_axis[n].tid;
assign s_axis_tdest[n] = s_axis[n].tdest;
assign s_axis_tuser[n] = s_axis[n].tuser;
end
assign s_axis_tready = s_axis_tready_reg;
// mux for incoming packet
wire [DATA_W-1:0] current_s_tdata = s_axis_tdata[select_reg];
wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep[select_reg];
wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb[select_reg];
wire current_s_tvalid = s_axis_tvalid[select_reg];
wire current_s_tready = s_axis_tready[select_reg];
wire current_s_tlast = s_axis_tlast[select_reg];
wire [ID_W-1:0] current_s_tid = s_axis_tid[select_reg];
wire [DEST_W-1:0] current_s_tdest = s_axis_tdest[select_reg];
wire [USER_W-1:0] current_s_tuser = s_axis_tuser[select_reg];
always_comb begin
select_next = select_reg;
frame_next = frame_reg;
s_axis_tready_next = 0;
if (current_s_tvalid & current_s_tready) begin
// end of frame detection
if (current_s_tlast) begin
frame_next = 1'b0;
end
end
if (!frame_reg && enable && s_axis_tvalid[select]) begin
// start of frame, grab select value
frame_next = 1'b1;
select_next = select;
end
// generate ready signal on selected port
s_axis_tready_next[select_next] = m_axis_tready_int_early && frame_next;
// pass through selected packet data
m_axis_tdata_int = current_s_tdata;
m_axis_tkeep_int = current_s_tkeep;
m_axis_tstrb_int = current_s_tstrb;
m_axis_tvalid_int = current_s_tvalid && current_s_tready && frame_reg;
m_axis_tlast_int = current_s_tlast;
m_axis_tid_int = current_s_tid;
m_axis_tdest_int = current_s_tdest;
m_axis_tuser_int = current_s_tuser;
end
always_ff @(posedge clk) begin
select_reg <= select_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
select_reg <= 0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 0;
end
end
// output datapath logic
reg [DATA_W-1:0] m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] m_axis_tkeep_reg = '0;
reg [KEEP_W-1:0] m_axis_tstrb_reg = '0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] m_axis_tid_reg = '0;
reg [DEST_W-1:0] m_axis_tdest_reg = '0;
reg [USER_W-1:0] m_axis_tuser_reg = '0;
reg [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
reg [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] temp_m_axis_tid_reg = '0;
reg [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
reg [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = m_axis_tlast_reg;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tstrb_reg <= m_axis_tstrb_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tstrb_reg <= temp_m_axis_tstrb_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tstrb_reg <= m_axis_tstrb_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall