mirror of
https://github.com/fpganinja/taxi.git
synced 2025-12-09 00:48:40 -08:00
814 lines
26 KiB
Systemverilog
814 lines
26 KiB
Systemverilog
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
|
/*
|
|
|
|
Copyright (c) 2019-2025 FPGA Ninja, LLC
|
|
|
|
Authors:
|
|
- Alex Forencich
|
|
|
|
*/
|
|
|
|
`resetall
|
|
`timescale 1ns / 1fs
|
|
`default_nettype none
|
|
|
|
/*
|
|
* PTP clock CDC (clock domain crossing) module
|
|
*/
|
|
module taxi_ptp_clock_cdc #
|
|
(
|
|
parameter TS_W = 96,
|
|
parameter NS_W = 4,
|
|
parameter LOG_RATE = 3,
|
|
parameter PIPELINE_OUTPUT = 0
|
|
)
|
|
(
|
|
input wire logic input_clk,
|
|
input wire logic input_rst,
|
|
input wire logic output_clk,
|
|
input wire logic output_rst,
|
|
input wire logic sample_clk,
|
|
|
|
/*
|
|
* Timestamp inputs from source PTP clock
|
|
*/
|
|
input wire logic [TS_W-1:0] input_ts,
|
|
input wire logic input_ts_step,
|
|
|
|
/*
|
|
* Timestamp outputs
|
|
*/
|
|
output wire logic [TS_W-1:0] output_ts,
|
|
output wire logic output_ts_step,
|
|
|
|
/*
|
|
* PPS output
|
|
*/
|
|
output wire logic output_pps,
|
|
output wire logic output_pps_str,
|
|
|
|
/*
|
|
* Status
|
|
*/
|
|
output wire logic locked
|
|
);
|
|
|
|
// Check configuration
|
|
if (TS_W != 64 && TS_W != 96)
|
|
$fatal(0, "Error: Timestamp width must be 64 or 96");
|
|
|
|
localparam FNS_W = 16;
|
|
|
|
localparam TS_NS_W = TS_W == 96 ? 30 : 48;
|
|
localparam TS_FNS_W = FNS_W > 16 ? 16 : FNS_W;
|
|
|
|
localparam CMP_FNS_W = 4;
|
|
|
|
localparam PHASE_CNT_W = LOG_RATE;
|
|
localparam PHASE_ACC_W = PHASE_CNT_W+16;
|
|
|
|
localparam LOG_SAMPLE_SYNC_RATE = LOG_RATE;
|
|
localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2;
|
|
|
|
localparam LOG_PHASE_ERR_RATE = 4;
|
|
localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2;
|
|
|
|
localparam DEST_SYNC_LOCK_W = 7;
|
|
localparam FREQ_LOCK_W = 8;
|
|
localparam PTP_LOCK_W = 8;
|
|
|
|
localparam TIME_ERR_INT_W = NS_W+FNS_W;
|
|
|
|
localparam [30:0] NS_PER_S = 31'd1_000_000_000;
|
|
|
|
logic [NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next;
|
|
logic [NS_W+FNS_W-1:0] period_ns_delay_reg = '0, period_ns_delay_next;
|
|
logic [31+FNS_W-1:0] period_ns_ovf_reg = '0, period_ns_ovf_next;
|
|
|
|
logic [47:0] src_ts_s_capt_reg = '0;
|
|
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_capt_reg = '0;
|
|
logic src_ts_step_capt_reg = '0;
|
|
|
|
logic [47:0] dest_ts_s_capt_reg = '0;
|
|
logic [TS_NS_W+CMP_FNS_W-1:0] dest_ts_ns_capt_reg = '0;
|
|
|
|
logic [47:0] src_ts_s_sync_reg = '0;
|
|
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_sync_reg = '0;
|
|
logic src_ts_step_sync_reg = '0;
|
|
|
|
logic [47:0] ts_s_reg = '0, ts_s_next;
|
|
logic [TS_NS_W+FNS_W-1:0] ts_ns_reg = '0, ts_ns_next;
|
|
logic [TS_NS_W+FNS_W-1:0] ts_ns_inc_reg = '0, ts_ns_inc_next;
|
|
logic [TS_NS_W+FNS_W+1-1:0] ts_ns_ovf_reg = '1, ts_ns_ovf_next;
|
|
|
|
logic ts_step_reg = 1'b0, ts_step_next;
|
|
|
|
logic pps_reg = 1'b0;
|
|
logic pps_str_reg = 1'b0;
|
|
|
|
logic [47:0] ts_s_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
logic [TS_NS_W+CMP_FNS_W-1:0] ts_ns_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
logic ts_step_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
logic pps_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
|
|
logic [PHASE_CNT_W-1:0] src_phase_reg = '0;
|
|
logic [PHASE_ACC_W-1:0] dest_phase_reg = '0, dest_phase_next;
|
|
logic [PHASE_ACC_W-1:0] dest_phase_inc_reg = '0, dest_phase_inc_next;
|
|
|
|
logic src_sync_reg = 1'b0;
|
|
logic src_update_reg = 1'b0;
|
|
logic src_phase_sync_reg = 1'b0;
|
|
logic dest_sync_reg = 1'b0;
|
|
logic dest_update_reg = 1'b0, dest_update_next;
|
|
logic dest_phase_sync_reg = 1'b0;
|
|
|
|
logic src_sync_sync1_reg = 1'b0;
|
|
logic src_sync_sync2_reg = 1'b0;
|
|
logic src_sync_sync3_reg = 1'b0;
|
|
logic src_phase_sync_sync1_reg = 1'b0;
|
|
logic src_phase_sync_sync2_reg = 1'b0;
|
|
logic src_phase_sync_sync3_reg = 1'b0;
|
|
logic dest_phase_sync_sync1_reg = 1'b0;
|
|
logic dest_phase_sync_sync2_reg = 1'b0;
|
|
logic dest_phase_sync_sync3_reg = 1'b0;
|
|
|
|
logic src_sync_sample_sync1_reg = 1'b0;
|
|
logic src_sync_sample_sync2_reg = 1'b0;
|
|
logic src_sync_sample_sync3_reg = 1'b0;
|
|
logic dest_sync_sample_sync1_reg = 1'b0;
|
|
logic dest_sync_sample_sync2_reg = 1'b0;
|
|
logic dest_sync_sample_sync3_reg = 1'b0;
|
|
|
|
logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0;
|
|
logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0;
|
|
logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0;
|
|
logic sample_update_reg = 1'b0;
|
|
logic sample_update_sync1_reg = 1'b0;
|
|
logic sample_update_sync2_reg = 1'b0;
|
|
logic sample_update_sync3_reg = 1'b0;
|
|
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
|
|
// pipeline
|
|
(* shreg_extract = "no" *)
|
|
logic [TS_W-1:0] output_ts_reg[0:PIPELINE_OUTPUT-1];
|
|
(* shreg_extract = "no" *)
|
|
logic output_ts_step_reg[0:PIPELINE_OUTPUT-1];
|
|
(* shreg_extract = "no" *)
|
|
logic output_pps_reg[0:PIPELINE_OUTPUT-1];
|
|
(* shreg_extract = "no" *)
|
|
logic output_pps_str_reg[0:PIPELINE_OUTPUT-1];
|
|
|
|
assign output_ts = output_ts_reg[PIPELINE_OUTPUT-1];
|
|
assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1];
|
|
assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1];
|
|
assign output_pps_str = output_pps_str_reg[PIPELINE_OUTPUT-1];
|
|
|
|
initial begin
|
|
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
output_ts_reg[i] = 0;
|
|
output_ts_step_reg[i] = 1'b0;
|
|
output_pps_reg[i] = 1'b0;
|
|
output_pps_str_reg[i] = 1'b0;
|
|
end
|
|
end
|
|
|
|
always_ff @(posedge output_clk) begin
|
|
if (TS_W == 96) begin
|
|
output_ts_reg[0][95:48] <= ts_s_reg;
|
|
output_ts_reg[0][47:46] <= 2'b00;
|
|
output_ts_reg[0][45:0] <= 46'({ts_ns_reg, 16'd0} >> FNS_W);
|
|
end else if (TS_W == 64) begin
|
|
output_ts_reg[0] <= 64'({ts_ns_reg, 16'd0} >> FNS_W);
|
|
end
|
|
|
|
output_ts_step_reg[0] <= ts_step_reg;
|
|
output_pps_reg[0] <= pps_reg;
|
|
output_pps_str_reg[0] <= pps_str_reg;
|
|
|
|
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
|
|
output_ts_reg[i+1] <= output_ts_reg[i];
|
|
output_ts_step_reg[i+1] <= output_ts_step_reg[i];
|
|
output_pps_reg[i+1] <= output_pps_reg[i];
|
|
output_pps_str_reg[i+1] <= output_pps_str_reg[i];
|
|
end
|
|
|
|
if (output_rst) begin
|
|
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
output_ts_reg[i] <= 0;
|
|
output_ts_step_reg[i] <= 1'b0;
|
|
output_pps_reg[i] <= 1'b0;
|
|
output_pps_str_reg[i] <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
end else begin
|
|
|
|
if (TS_W == 96) begin
|
|
assign output_ts[95:48] = ts_s_reg;
|
|
assign output_ts[47:46] = 2'b00;
|
|
assign output_ts[45:0] = 46'({ts_ns_reg, 16'd0} >> FNS_W);
|
|
end else if (TS_W == 64) begin
|
|
assign output_ts = 64'({ts_ns_reg, 16'd0} >> FNS_W);
|
|
end
|
|
|
|
assign output_ts_step = ts_step_reg;
|
|
|
|
assign output_pps = pps_reg;
|
|
assign output_pps_str = pps_str_reg;
|
|
|
|
end
|
|
|
|
initial begin
|
|
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
ts_s_pipe_reg[i] = 0;
|
|
ts_ns_pipe_reg[i] = 0;
|
|
ts_step_pipe_reg[i] = 1'b0;
|
|
pps_pipe_reg[i] = 1'b0;
|
|
end
|
|
end
|
|
|
|
// source PTP clock capture and sync logic
|
|
logic input_ts_step_reg = 1'b0;
|
|
|
|
always_ff @(posedge input_clk) begin
|
|
input_ts_step_reg <= input_ts_step || input_ts_step_reg;
|
|
|
|
src_phase_sync_reg <= input_ts[16+8];
|
|
|
|
{src_update_reg, src_phase_reg} <= src_phase_reg+1;
|
|
|
|
if (src_update_reg) begin
|
|
// capture source TS
|
|
if (TS_W == 96) begin
|
|
src_ts_s_capt_reg <= 48'(input_ts >> 48);
|
|
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts[45:0] >> (16-CMP_FNS_W));
|
|
end else begin
|
|
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts >> (16-CMP_FNS_W));
|
|
end
|
|
src_ts_step_capt_reg <= input_ts_step || input_ts_step_reg;
|
|
input_ts_step_reg <= 1'b0;
|
|
src_sync_reg <= !src_sync_reg;
|
|
end
|
|
|
|
if (input_rst) begin
|
|
input_ts_step_reg <= 1'b0;
|
|
|
|
src_phase_reg <= '0;
|
|
src_sync_reg <= 1'b0;
|
|
src_update_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
// CDC logic
|
|
always_ff @(posedge output_clk) begin
|
|
src_sync_sync1_reg <= src_sync_reg;
|
|
src_sync_sync2_reg <= src_sync_sync1_reg;
|
|
src_sync_sync3_reg <= src_sync_sync2_reg;
|
|
src_phase_sync_sync1_reg <= src_phase_sync_reg;
|
|
src_phase_sync_sync2_reg <= src_phase_sync_sync1_reg;
|
|
src_phase_sync_sync3_reg <= src_phase_sync_sync2_reg;
|
|
dest_phase_sync_sync1_reg <= dest_phase_sync_reg;
|
|
dest_phase_sync_sync2_reg <= dest_phase_sync_sync1_reg;
|
|
dest_phase_sync_sync3_reg <= dest_phase_sync_sync2_reg;
|
|
end
|
|
|
|
always_ff @(posedge sample_clk) begin
|
|
src_sync_sample_sync1_reg <= src_sync_reg;
|
|
src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg;
|
|
src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg;
|
|
dest_sync_sample_sync1_reg <= dest_sync_reg;
|
|
dest_sync_sample_sync2_reg <= dest_sync_sample_sync1_reg;
|
|
dest_sync_sample_sync3_reg <= dest_sync_sample_sync2_reg;
|
|
end
|
|
|
|
logic edge_1_reg = 1'b0;
|
|
logic edge_2_reg = 1'b0;
|
|
|
|
logic [3:0] active_reg = '0;
|
|
|
|
always_ff @(posedge sample_clk) begin
|
|
// phase and frequency detector
|
|
if (dest_sync_sample_sync2_reg && !dest_sync_sample_sync3_reg) begin
|
|
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= 1'b0;
|
|
end else begin
|
|
edge_1_reg <= !edge_2_reg;
|
|
edge_2_reg <= 1'b0;
|
|
end
|
|
end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= !edge_1_reg;
|
|
end
|
|
|
|
// accumulator
|
|
sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg}));
|
|
|
|
sample_cnt_reg <= sample_cnt_reg + 1;
|
|
|
|
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
active_reg[0] <= 1'b1;
|
|
end
|
|
|
|
if (sample_cnt_reg == 0) begin
|
|
active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg};
|
|
sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg}));
|
|
sample_acc_out_reg <= sample_acc_reg;
|
|
if (active_reg != 0) begin
|
|
sample_update_reg <= !sample_update_reg;
|
|
end
|
|
end
|
|
end
|
|
|
|
always_ff @(posedge output_clk) begin
|
|
sample_update_sync1_reg <= sample_update_reg;
|
|
sample_update_sync2_reg <= sample_update_sync1_reg;
|
|
sample_update_sync3_reg <= sample_update_sync2_reg;
|
|
end
|
|
|
|
logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0;
|
|
logic sample_acc_sync_valid_reg = '0;
|
|
|
|
logic [PHASE_ACC_W-1:0] dest_err_int_reg = '0, dest_err_int_next;
|
|
logic [1:0] dest_ovf;
|
|
|
|
logic [DEST_SYNC_LOCK_W-1:0] dest_sync_lock_count_reg = '0, dest_sync_lock_count_next;
|
|
logic dest_sync_locked_reg = 1'b0, dest_sync_locked_next;
|
|
|
|
always_comb begin
|
|
{dest_update_next, dest_phase_next} = dest_phase_reg + dest_phase_inc_reg;
|
|
dest_phase_inc_next = dest_phase_inc_reg;
|
|
|
|
dest_err_int_next = dest_err_int_reg;
|
|
|
|
dest_sync_lock_count_next = dest_sync_lock_count_reg;
|
|
dest_sync_locked_next = dest_sync_locked_reg;
|
|
|
|
dest_ovf = 0;
|
|
|
|
if (sample_acc_sync_valid_reg) begin
|
|
// updated sampled dest_phase error
|
|
|
|
// time integral of error
|
|
if (dest_sync_locked_reg) begin
|
|
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg));
|
|
end else begin
|
|
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**6);
|
|
end
|
|
|
|
// saturate
|
|
if (dest_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
dest_err_int_next = '0;
|
|
end else if (dest_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
dest_err_int_next = '1;
|
|
end
|
|
|
|
// compute output
|
|
if (dest_sync_locked_reg) begin
|
|
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4);
|
|
end else begin
|
|
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**10);
|
|
end
|
|
|
|
// saturate
|
|
if (dest_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
dest_phase_inc_next = '0;
|
|
end else if (dest_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
dest_phase_inc_next = '1;
|
|
end
|
|
|
|
// locked status
|
|
if ($signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:2]) == 0 || $signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:1]) == -1) begin
|
|
if (&dest_sync_lock_count_reg) begin
|
|
dest_sync_locked_next = 1'b1;
|
|
end else begin
|
|
dest_sync_lock_count_next = dest_sync_lock_count_reg + 1;
|
|
end
|
|
end else begin
|
|
dest_sync_lock_count_next = '0;
|
|
dest_sync_locked_next = 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0;
|
|
logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0;
|
|
logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0;
|
|
logic phase_err_out_valid_reg = '0;
|
|
|
|
logic phase_edge_1_reg = 1'b0;
|
|
logic phase_edge_2_reg = 1'b0;
|
|
|
|
logic [5:0] phase_active_reg = '0;
|
|
|
|
logic ts_sync_valid_reg = 1'b0;
|
|
|
|
always_ff @(posedge output_clk) begin
|
|
dest_phase_reg <= dest_phase_next;
|
|
dest_phase_inc_reg <= dest_phase_inc_next;
|
|
dest_update_reg <= dest_update_next;
|
|
|
|
sample_acc_sync_valid_reg <= 1'b0;
|
|
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
|
|
// latch in synchronized counts from phase detector
|
|
sample_acc_sync_reg <= sample_acc_out_reg;
|
|
sample_acc_sync_valid_reg <= 1'b1;
|
|
end
|
|
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
dest_phase_sync_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1][8+FNS_W];
|
|
end else begin
|
|
dest_phase_sync_reg <= ts_ns_reg[8+FNS_W];
|
|
end
|
|
|
|
// phase and frequency detector
|
|
if (dest_phase_sync_sync2_reg && !dest_phase_sync_sync3_reg) begin
|
|
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
|
|
phase_edge_1_reg <= 1'b0;
|
|
phase_edge_2_reg <= 1'b0;
|
|
end else begin
|
|
phase_edge_1_reg <= !phase_edge_2_reg;
|
|
phase_edge_2_reg <= 1'b0;
|
|
end
|
|
end else if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
|
|
phase_edge_1_reg <= 1'b0;
|
|
phase_edge_2_reg <= !phase_edge_1_reg;
|
|
end
|
|
|
|
// accumulator
|
|
phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg}));
|
|
|
|
phase_err_cnt_reg <= phase_err_cnt_reg + 1;
|
|
|
|
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
|
|
phase_active_reg[0] <= 1'b1;
|
|
end
|
|
|
|
phase_err_out_valid_reg <= 1'b0;
|
|
if (phase_err_cnt_reg == 0) begin
|
|
phase_active_reg <= {phase_active_reg[4:0], src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg};
|
|
phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg}));
|
|
phase_err_out_reg <= phase_err_acc_reg;
|
|
if (phase_active_reg != 0) begin
|
|
phase_err_out_valid_reg <= 1'b1;
|
|
end
|
|
end
|
|
|
|
if (dest_update_reg) begin
|
|
// capture local TS
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
dest_ts_s_capt_reg <= ts_s_pipe_reg[PIPELINE_OUTPUT-1];
|
|
dest_ts_ns_capt_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1];
|
|
end else begin
|
|
dest_ts_s_capt_reg <= ts_s_reg;
|
|
dest_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-CMP_FNS_W);
|
|
end
|
|
|
|
dest_sync_reg <= !dest_sync_reg;
|
|
end
|
|
|
|
ts_sync_valid_reg <= 1'b0;
|
|
|
|
if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin
|
|
// store captured source TS
|
|
if (TS_W == 96) begin
|
|
src_ts_s_sync_reg <= src_ts_s_capt_reg;
|
|
end
|
|
src_ts_ns_sync_reg <= src_ts_ns_capt_reg;
|
|
src_ts_step_sync_reg <= src_ts_step_capt_reg;
|
|
|
|
ts_sync_valid_reg <= 1'b1;
|
|
end
|
|
|
|
dest_err_int_reg <= dest_err_int_next;
|
|
|
|
dest_sync_lock_count_reg <= dest_sync_lock_count_next;
|
|
dest_sync_locked_reg <= dest_sync_locked_next;
|
|
|
|
if (output_rst) begin
|
|
dest_phase_reg <= '0;
|
|
dest_phase_inc_reg <= '0;
|
|
dest_sync_reg <= 1'b0;
|
|
dest_update_reg <= 1'b0;
|
|
|
|
dest_err_int_reg <= '0;
|
|
|
|
dest_sync_lock_count_reg <= '0;
|
|
dest_sync_locked_reg <= 1'b0;
|
|
|
|
ts_sync_valid_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
logic ts_diff_reg = 1'b0, ts_diff_next;
|
|
logic ts_diff_valid_reg = 1'b0, ts_diff_valid_next;
|
|
logic [3:0] mismatch_cnt_reg = '0, mismatch_cnt_next;
|
|
logic load_ts_reg = 1'b0, load_ts_next;
|
|
|
|
logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next;
|
|
|
|
logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next;
|
|
|
|
logic [1:0] ptp_ovf;
|
|
|
|
logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next;
|
|
logic freq_locked_reg = 1'b0, freq_locked_next;
|
|
logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next;
|
|
logic ptp_locked_reg = 1'b0, ptp_locked_next;
|
|
|
|
logic gain_sel_reg = '0, gain_sel_next;
|
|
|
|
assign locked = ptp_locked_reg && freq_locked_reg && dest_sync_locked_reg;
|
|
|
|
always_comb begin
|
|
period_ns_next = period_ns_reg;
|
|
|
|
ts_s_next = ts_s_reg;
|
|
ts_ns_next = ts_ns_reg;
|
|
ts_ns_inc_next = ts_ns_inc_reg;
|
|
ts_ns_ovf_next = ts_ns_ovf_reg;
|
|
|
|
ts_step_next = '0;
|
|
|
|
ts_diff_next = 1'b0;
|
|
ts_diff_valid_next = 1'b0;
|
|
mismatch_cnt_next = mismatch_cnt_reg;
|
|
load_ts_next = load_ts_reg;
|
|
|
|
ts_ns_diff_next = ts_ns_diff_reg;
|
|
|
|
time_err_int_next = time_err_int_reg;
|
|
|
|
freq_lock_count_next = freq_lock_count_reg;
|
|
freq_locked_next = freq_locked_reg;
|
|
ptp_lock_count_next = ptp_lock_count_reg;
|
|
ptp_locked_next = ptp_locked_reg;
|
|
|
|
gain_sel_next = gain_sel_reg;
|
|
|
|
// PTP clock
|
|
period_ns_delay_next = period_ns_reg;
|
|
|
|
if (TS_W == 96) begin
|
|
// 96 bit timestamp
|
|
ts_ns_inc_next = ts_ns_inc_reg + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
|
|
ts_ns_ovf_next = ts_ns_inc_reg - (TS_NS_W+FNS_W)'(period_ns_ovf_reg);
|
|
ts_ns_next = ts_ns_inc_reg;
|
|
period_ns_ovf_next = (31+FNS_W)'({NS_PER_S, {FNS_W{1'b0}}}) - (31+FNS_W)'(period_ns_reg);
|
|
|
|
if (!ts_ns_ovf_reg[30+FNS_W]) begin
|
|
// if the overflow lookahead did not borrow, one second has elapsed
|
|
// increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set
|
|
ts_ns_inc_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0] + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
|
|
ts_ns_ovf_next[30+FNS_W] = 1'b1;
|
|
ts_ns_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0];
|
|
ts_s_next = ts_s_reg + 1;
|
|
end
|
|
end else if (TS_W == 64) begin
|
|
// 64 bit timestamp
|
|
ts_ns_next = ts_ns_reg + (TS_NS_W+FNS_W)'(period_ns_reg);
|
|
end
|
|
|
|
if (ts_sync_valid_reg) begin
|
|
// Read new value
|
|
if (TS_W == 96) begin
|
|
if (src_ts_step_sync_reg || load_ts_reg) begin
|
|
// input stepped
|
|
load_ts_next = 1'b0;
|
|
|
|
ts_s_next = src_ts_s_sync_reg;
|
|
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
|
|
ts_ns_inc_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
|
|
ts_ns_ovf_next[30+FNS_W] = 1'b1;
|
|
ts_step_next = 1;
|
|
end else begin
|
|
// input did not step
|
|
load_ts_next = 1'b0;
|
|
ts_diff_valid_next = freq_locked_reg;
|
|
end
|
|
// compute difference
|
|
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
|
|
ts_diff_next = src_ts_s_sync_reg != dest_ts_s_capt_reg || src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
|
|
end else if (TS_W == 64) begin
|
|
if (src_ts_step_sync_reg || load_ts_reg) begin
|
|
// input stepped
|
|
load_ts_next = 1'b0;
|
|
|
|
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
|
|
ts_step_next = 1;
|
|
end else begin
|
|
// input did not step
|
|
load_ts_next = 1'b0;
|
|
ts_diff_valid_next = freq_locked_reg;
|
|
end
|
|
// compute difference
|
|
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
|
|
ts_diff_next = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
|
|
end
|
|
end
|
|
|
|
if (ts_diff_valid_reg) begin
|
|
if (ts_diff_reg) begin
|
|
if (&mismatch_cnt_reg) begin
|
|
load_ts_next = 1'b1;
|
|
mismatch_cnt_next = '0;
|
|
end else begin
|
|
mismatch_cnt_next = mismatch_cnt_reg + 1;
|
|
end
|
|
end else begin
|
|
mismatch_cnt_next = '0;
|
|
end
|
|
end
|
|
|
|
if (phase_err_out_valid_reg) begin
|
|
// coarse phase/frequency lock of PTP clock
|
|
if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin
|
|
if (freq_lock_count_reg != 0) begin
|
|
freq_lock_count_next = freq_lock_count_reg - 1;
|
|
end else begin
|
|
freq_locked_next = 1'b0;
|
|
end
|
|
end else begin
|
|
if (&freq_lock_count_reg) begin
|
|
freq_locked_next = 1'b1;
|
|
end else begin
|
|
freq_lock_count_next = freq_lock_count_reg + 1;
|
|
end
|
|
end
|
|
|
|
if (!freq_locked_reg) begin
|
|
ts_ns_diff_next = $signed(phase_err_out_reg) * 8 * 2**CMP_FNS_W;
|
|
ts_diff_valid_next = 1'b1;
|
|
end
|
|
end
|
|
|
|
if (ts_diff_valid_reg) begin
|
|
// PI control
|
|
|
|
// gain scheduling
|
|
casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5])
|
|
5'b01zzz: gain_sel_next = 1'b1;
|
|
5'b001zz: gain_sel_next = 1'b1;
|
|
5'b0001z: gain_sel_next = 1'b1;
|
|
5'b00001: gain_sel_next = 1'b1;
|
|
5'b00000: gain_sel_next = 1'b0;
|
|
5'b11111: gain_sel_next = 1'b0;
|
|
5'b11110: gain_sel_next = 1'b1;
|
|
5'b1110z: gain_sel_next = 1'b1;
|
|
5'b110zz: gain_sel_next = 1'b1;
|
|
5'b10zzz: gain_sel_next = 1'b1;
|
|
default: gain_sel_next = 1'b0;
|
|
endcase
|
|
|
|
// time integral of error
|
|
case (gain_sel_reg)
|
|
1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4);
|
|
1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
|
|
endcase
|
|
|
|
// saturate
|
|
if (ptp_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
time_err_int_next = '0;
|
|
end else if (ptp_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
time_err_int_next = '1;
|
|
end
|
|
|
|
// compute output
|
|
case (gain_sel_reg)
|
|
1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
|
|
1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**6);
|
|
endcase
|
|
|
|
// saturate
|
|
if (ptp_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
period_ns_next = '0;
|
|
end else if (ptp_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
period_ns_next = '1;
|
|
end
|
|
|
|
// adjust period if integrator is saturated
|
|
if (time_err_int_reg == 0) begin
|
|
period_ns_next = '0;
|
|
end else if (~time_err_int_reg == 0) begin
|
|
period_ns_next = '1;
|
|
end
|
|
|
|
// locked status
|
|
if (!freq_locked_reg) begin
|
|
ptp_lock_count_next = 0;
|
|
ptp_locked_next = 1'b0;
|
|
end else if (gain_sel_reg == 1'b0) begin
|
|
if (&ptp_lock_count_reg) begin
|
|
ptp_locked_next = 1'b1;
|
|
end else begin
|
|
ptp_lock_count_next = ptp_lock_count_reg + 1;
|
|
end
|
|
end else begin
|
|
if (ptp_lock_count_reg != 0) begin
|
|
ptp_lock_count_next = ptp_lock_count_reg - 1;
|
|
end else begin
|
|
ptp_locked_next = 1'b0;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
always_ff @(posedge output_clk) begin
|
|
period_ns_reg <= period_ns_next;
|
|
period_ns_delay_reg <= period_ns_delay_next;
|
|
period_ns_ovf_reg <= period_ns_ovf_next;
|
|
|
|
ts_s_reg <= ts_s_next;
|
|
ts_ns_reg <= ts_ns_next;
|
|
ts_ns_inc_reg <= ts_ns_inc_next;
|
|
ts_ns_ovf_reg <= ts_ns_ovf_next;
|
|
|
|
ts_step_reg <= ts_step_next;
|
|
|
|
ts_diff_reg <= ts_diff_next;
|
|
ts_diff_valid_reg <= ts_diff_valid_next;
|
|
mismatch_cnt_reg <= mismatch_cnt_next;
|
|
load_ts_reg <= load_ts_next;
|
|
|
|
ts_ns_diff_reg <= ts_ns_diff_next;
|
|
|
|
time_err_int_reg <= time_err_int_next;
|
|
|
|
freq_lock_count_reg <= freq_lock_count_next;
|
|
freq_locked_reg <= freq_locked_next;
|
|
ptp_lock_count_reg <= ptp_lock_count_next;
|
|
ptp_locked_reg <= ptp_locked_next;
|
|
|
|
gain_sel_reg <= gain_sel_next;
|
|
|
|
// PPS output
|
|
pps_reg <= 1'b0;
|
|
if (TS_W == 96) begin
|
|
if (ts_ns_reg[29]) begin
|
|
pps_str_reg <= 1'b0;
|
|
end
|
|
if (!ts_ns_ovf_reg[30+FNS_W]) begin
|
|
pps_reg <= 1'b1;
|
|
pps_str_reg <= 1'b1;
|
|
end
|
|
end
|
|
|
|
// pipeline
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
ts_s_pipe_reg[0] <= ts_s_reg;
|
|
ts_ns_pipe_reg[0] <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-TS_FNS_W);
|
|
ts_step_pipe_reg[0] <= ts_step_reg;
|
|
pps_pipe_reg[0] <= pps_reg;
|
|
|
|
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
|
|
ts_s_pipe_reg[i+1] <= ts_s_pipe_reg[i];
|
|
ts_ns_pipe_reg[i+1] <= ts_ns_pipe_reg[i];
|
|
ts_step_pipe_reg[i+1] <= ts_step_pipe_reg[i];
|
|
pps_pipe_reg[i+1] <= pps_pipe_reg[i];
|
|
end
|
|
end
|
|
|
|
if (output_rst) begin
|
|
period_ns_reg <= '0;
|
|
ts_s_reg <= '0;
|
|
ts_ns_reg <= '0;
|
|
ts_ns_inc_reg <= '0;
|
|
ts_ns_ovf_reg[30+FNS_W] <= 1'b1;
|
|
ts_step_reg <= '0;
|
|
pps_reg <= '0;
|
|
|
|
ts_diff_reg <= 1'b0;
|
|
ts_diff_valid_reg <= 1'b0;
|
|
mismatch_cnt_reg <= '0;
|
|
load_ts_reg <= '0;
|
|
|
|
time_err_int_reg <= '0;
|
|
|
|
freq_lock_count_reg <= '0;
|
|
freq_locked_reg <= 1'b0;
|
|
ptp_lock_count_reg <= '0;
|
|
ptp_locked_reg <= 1'b0;
|
|
|
|
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
ts_s_pipe_reg[i] <= '0;
|
|
ts_ns_pipe_reg[i] <= '0;
|
|
ts_step_pipe_reg[i] <= 1'b0;
|
|
pps_pipe_reg[i] <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
`resetall
|