Files
taxi/rtl/ptp/taxi_ptp_clock_cdc.sv
Alex Forencich 68c547b219 ptp: Minor cleanup in PTP CDC module
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-13 20:17:21 -08:00

814 lines
26 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1fs
`default_nettype none
/*
* PTP clock CDC (clock domain crossing) module
*/
module taxi_ptp_clock_cdc #
(
parameter TS_W = 96,
parameter NS_W = 4,
parameter LOG_RATE = 3,
parameter PIPELINE_OUTPUT = 0
)
(
input wire logic input_clk,
input wire logic input_rst,
input wire logic output_clk,
input wire logic output_rst,
input wire logic sample_clk,
/*
* Timestamp inputs from source PTP clock
*/
input wire logic [TS_W-1:0] input_ts,
input wire logic input_ts_step,
/*
* Timestamp outputs
*/
output wire logic [TS_W-1:0] output_ts,
output wire logic output_ts_step,
/*
* PPS output
*/
output wire logic output_pps,
output wire logic output_pps_str,
/*
* Status
*/
output wire logic locked
);
// Check configuration
if (TS_W != 64 && TS_W != 96)
$fatal(0, "Error: Timestamp width must be 64 or 96");
localparam FNS_W = 16;
localparam TS_NS_W = TS_W == 96 ? 30 : 48;
localparam TS_FNS_W = FNS_W > 16 ? 16 : FNS_W;
localparam CMP_FNS_W = 4;
localparam PHASE_CNT_W = LOG_RATE;
localparam PHASE_ACC_W = PHASE_CNT_W+16;
localparam LOG_SAMPLE_SYNC_RATE = LOG_RATE;
localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2;
localparam LOG_PHASE_ERR_RATE = 4;
localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2;
localparam DEST_SYNC_LOCK_W = 7;
localparam FREQ_LOCK_W = 8;
localparam PTP_LOCK_W = 8;
localparam TIME_ERR_INT_W = NS_W+FNS_W;
localparam [30:0] NS_PER_S = 31'd1_000_000_000;
logic [NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next;
logic [NS_W+FNS_W-1:0] period_ns_delay_reg = '0, period_ns_delay_next;
logic [31+FNS_W-1:0] period_ns_ovf_reg = '0, period_ns_ovf_next;
logic [47:0] src_ts_s_capt_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_capt_reg = '0;
logic src_ts_step_capt_reg = '0;
logic [47:0] dest_ts_s_capt_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] dest_ts_ns_capt_reg = '0;
logic [47:0] src_ts_s_sync_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_sync_reg = '0;
logic src_ts_step_sync_reg = '0;
logic [47:0] ts_s_reg = '0, ts_s_next;
logic [TS_NS_W+FNS_W-1:0] ts_ns_reg = '0, ts_ns_next;
logic [TS_NS_W+FNS_W-1:0] ts_ns_inc_reg = '0, ts_ns_inc_next;
logic [TS_NS_W+FNS_W+1-1:0] ts_ns_ovf_reg = '1, ts_ns_ovf_next;
logic ts_step_reg = 1'b0, ts_step_next;
logic pps_reg = 1'b0;
logic pps_str_reg = 1'b0;
logic [47:0] ts_s_pipe_reg[0:PIPELINE_OUTPUT-1];
logic [TS_NS_W+CMP_FNS_W-1:0] ts_ns_pipe_reg[0:PIPELINE_OUTPUT-1];
logic ts_step_pipe_reg[0:PIPELINE_OUTPUT-1];
logic pps_pipe_reg[0:PIPELINE_OUTPUT-1];
logic [PHASE_CNT_W-1:0] src_phase_reg = '0;
logic [PHASE_ACC_W-1:0] dest_phase_reg = '0, dest_phase_next;
logic [PHASE_ACC_W-1:0] dest_phase_inc_reg = '0, dest_phase_inc_next;
logic src_sync_reg = 1'b0;
logic src_update_reg = 1'b0;
logic src_phase_sync_reg = 1'b0;
logic dest_sync_reg = 1'b0;
logic dest_update_reg = 1'b0, dest_update_next;
logic dest_phase_sync_reg = 1'b0;
logic src_sync_sync1_reg = 1'b0;
logic src_sync_sync2_reg = 1'b0;
logic src_sync_sync3_reg = 1'b0;
logic src_phase_sync_sync1_reg = 1'b0;
logic src_phase_sync_sync2_reg = 1'b0;
logic src_phase_sync_sync3_reg = 1'b0;
logic dest_phase_sync_sync1_reg = 1'b0;
logic dest_phase_sync_sync2_reg = 1'b0;
logic dest_phase_sync_sync3_reg = 1'b0;
logic src_sync_sample_sync1_reg = 1'b0;
logic src_sync_sample_sync2_reg = 1'b0;
logic src_sync_sample_sync3_reg = 1'b0;
logic dest_sync_sample_sync1_reg = 1'b0;
logic dest_sync_sample_sync2_reg = 1'b0;
logic dest_sync_sample_sync3_reg = 1'b0;
logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0;
logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0;
logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0;
logic sample_update_reg = 1'b0;
logic sample_update_sync1_reg = 1'b0;
logic sample_update_sync2_reg = 1'b0;
logic sample_update_sync3_reg = 1'b0;
if (PIPELINE_OUTPUT > 0) begin
// pipeline
(* shreg_extract = "no" *)
logic [TS_W-1:0] output_ts_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_ts_step_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_pps_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_pps_str_reg[0:PIPELINE_OUTPUT-1];
assign output_ts = output_ts_reg[PIPELINE_OUTPUT-1];
assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1];
assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1];
assign output_pps_str = output_pps_str_reg[PIPELINE_OUTPUT-1];
initial begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
output_ts_reg[i] = 0;
output_ts_step_reg[i] = 1'b0;
output_pps_reg[i] = 1'b0;
output_pps_str_reg[i] = 1'b0;
end
end
always_ff @(posedge output_clk) begin
if (TS_W == 96) begin
output_ts_reg[0][95:48] <= ts_s_reg;
output_ts_reg[0][47:46] <= 2'b00;
output_ts_reg[0][45:0] <= 46'({ts_ns_reg, 16'd0} >> FNS_W);
end else if (TS_W == 64) begin
output_ts_reg[0] <= 64'({ts_ns_reg, 16'd0} >> FNS_W);
end
output_ts_step_reg[0] <= ts_step_reg;
output_pps_reg[0] <= pps_reg;
output_pps_str_reg[0] <= pps_str_reg;
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
output_ts_reg[i+1] <= output_ts_reg[i];
output_ts_step_reg[i+1] <= output_ts_step_reg[i];
output_pps_reg[i+1] <= output_pps_reg[i];
output_pps_str_reg[i+1] <= output_pps_str_reg[i];
end
if (output_rst) begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
output_ts_reg[i] <= 0;
output_ts_step_reg[i] <= 1'b0;
output_pps_reg[i] <= 1'b0;
output_pps_str_reg[i] <= 1'b0;
end
end
end
end else begin
if (TS_W == 96) begin
assign output_ts[95:48] = ts_s_reg;
assign output_ts[47:46] = 2'b00;
assign output_ts[45:0] = 46'({ts_ns_reg, 16'd0} >> FNS_W);
end else if (TS_W == 64) begin
assign output_ts = 64'({ts_ns_reg, 16'd0} >> FNS_W);
end
assign output_ts_step = ts_step_reg;
assign output_pps = pps_reg;
assign output_pps_str = pps_str_reg;
end
initial begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
ts_s_pipe_reg[i] = 0;
ts_ns_pipe_reg[i] = 0;
ts_step_pipe_reg[i] = 1'b0;
pps_pipe_reg[i] = 1'b0;
end
end
// source PTP clock capture and sync logic
logic input_ts_step_reg = 1'b0;
always_ff @(posedge input_clk) begin
input_ts_step_reg <= input_ts_step || input_ts_step_reg;
src_phase_sync_reg <= input_ts[16+8];
{src_update_reg, src_phase_reg} <= src_phase_reg+1;
if (src_update_reg) begin
// capture source TS
if (TS_W == 96) begin
src_ts_s_capt_reg <= 48'(input_ts >> 48);
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts[45:0] >> (16-CMP_FNS_W));
end else begin
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts >> (16-CMP_FNS_W));
end
src_ts_step_capt_reg <= input_ts_step || input_ts_step_reg;
input_ts_step_reg <= 1'b0;
src_sync_reg <= !src_sync_reg;
end
if (input_rst) begin
input_ts_step_reg <= 1'b0;
src_phase_reg <= '0;
src_sync_reg <= 1'b0;
src_update_reg <= 1'b0;
end
end
// CDC logic
always_ff @(posedge output_clk) begin
src_sync_sync1_reg <= src_sync_reg;
src_sync_sync2_reg <= src_sync_sync1_reg;
src_sync_sync3_reg <= src_sync_sync2_reg;
src_phase_sync_sync1_reg <= src_phase_sync_reg;
src_phase_sync_sync2_reg <= src_phase_sync_sync1_reg;
src_phase_sync_sync3_reg <= src_phase_sync_sync2_reg;
dest_phase_sync_sync1_reg <= dest_phase_sync_reg;
dest_phase_sync_sync2_reg <= dest_phase_sync_sync1_reg;
dest_phase_sync_sync3_reg <= dest_phase_sync_sync2_reg;
end
always_ff @(posedge sample_clk) begin
src_sync_sample_sync1_reg <= src_sync_reg;
src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg;
src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg;
dest_sync_sample_sync1_reg <= dest_sync_reg;
dest_sync_sample_sync2_reg <= dest_sync_sample_sync1_reg;
dest_sync_sample_sync3_reg <= dest_sync_sample_sync2_reg;
end
logic edge_1_reg = 1'b0;
logic edge_2_reg = 1'b0;
logic [3:0] active_reg = '0;
always_ff @(posedge sample_clk) begin
// phase and frequency detector
if (dest_sync_sample_sync2_reg && !dest_sync_sample_sync3_reg) begin
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= 1'b0;
end else begin
edge_1_reg <= !edge_2_reg;
edge_2_reg <= 1'b0;
end
end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= !edge_1_reg;
end
// accumulator
sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg}));
sample_cnt_reg <= sample_cnt_reg + 1;
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
active_reg[0] <= 1'b1;
end
if (sample_cnt_reg == 0) begin
active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg};
sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg}));
sample_acc_out_reg <= sample_acc_reg;
if (active_reg != 0) begin
sample_update_reg <= !sample_update_reg;
end
end
end
always_ff @(posedge output_clk) begin
sample_update_sync1_reg <= sample_update_reg;
sample_update_sync2_reg <= sample_update_sync1_reg;
sample_update_sync3_reg <= sample_update_sync2_reg;
end
logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0;
logic sample_acc_sync_valid_reg = '0;
logic [PHASE_ACC_W-1:0] dest_err_int_reg = '0, dest_err_int_next;
logic [1:0] dest_ovf;
logic [DEST_SYNC_LOCK_W-1:0] dest_sync_lock_count_reg = '0, dest_sync_lock_count_next;
logic dest_sync_locked_reg = 1'b0, dest_sync_locked_next;
always_comb begin
{dest_update_next, dest_phase_next} = dest_phase_reg + dest_phase_inc_reg;
dest_phase_inc_next = dest_phase_inc_reg;
dest_err_int_next = dest_err_int_reg;
dest_sync_lock_count_next = dest_sync_lock_count_reg;
dest_sync_locked_next = dest_sync_locked_reg;
dest_ovf = 0;
if (sample_acc_sync_valid_reg) begin
// updated sampled dest_phase error
// time integral of error
if (dest_sync_locked_reg) begin
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg));
end else begin
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**6);
end
// saturate
if (dest_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dest_err_int_next = '0;
end else if (dest_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dest_err_int_next = '1;
end
// compute output
if (dest_sync_locked_reg) begin
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4);
end else begin
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**10);
end
// saturate
if (dest_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dest_phase_inc_next = '0;
end else if (dest_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dest_phase_inc_next = '1;
end
// locked status
if ($signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:2]) == 0 || $signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:1]) == -1) begin
if (&dest_sync_lock_count_reg) begin
dest_sync_locked_next = 1'b1;
end else begin
dest_sync_lock_count_next = dest_sync_lock_count_reg + 1;
end
end else begin
dest_sync_lock_count_next = '0;
dest_sync_locked_next = 1'b0;
end
end
end
logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0;
logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0;
logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0;
logic phase_err_out_valid_reg = '0;
logic phase_edge_1_reg = 1'b0;
logic phase_edge_2_reg = 1'b0;
logic [5:0] phase_active_reg = '0;
logic ts_sync_valid_reg = 1'b0;
always_ff @(posedge output_clk) begin
dest_phase_reg <= dest_phase_next;
dest_phase_inc_reg <= dest_phase_inc_next;
dest_update_reg <= dest_update_next;
sample_acc_sync_valid_reg <= 1'b0;
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
// latch in synchronized counts from phase detector
sample_acc_sync_reg <= sample_acc_out_reg;
sample_acc_sync_valid_reg <= 1'b1;
end
if (PIPELINE_OUTPUT > 0) begin
dest_phase_sync_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1][8+FNS_W];
end else begin
dest_phase_sync_reg <= ts_ns_reg[8+FNS_W];
end
// phase and frequency detector
if (dest_phase_sync_sync2_reg && !dest_phase_sync_sync3_reg) begin
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= 1'b0;
end else begin
phase_edge_1_reg <= !phase_edge_2_reg;
phase_edge_2_reg <= 1'b0;
end
end else if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= !phase_edge_1_reg;
end
// accumulator
phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg}));
phase_err_cnt_reg <= phase_err_cnt_reg + 1;
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_active_reg[0] <= 1'b1;
end
phase_err_out_valid_reg <= 1'b0;
if (phase_err_cnt_reg == 0) begin
phase_active_reg <= {phase_active_reg[4:0], src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg};
phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg}));
phase_err_out_reg <= phase_err_acc_reg;
if (phase_active_reg != 0) begin
phase_err_out_valid_reg <= 1'b1;
end
end
if (dest_update_reg) begin
// capture local TS
if (PIPELINE_OUTPUT > 0) begin
dest_ts_s_capt_reg <= ts_s_pipe_reg[PIPELINE_OUTPUT-1];
dest_ts_ns_capt_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1];
end else begin
dest_ts_s_capt_reg <= ts_s_reg;
dest_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-CMP_FNS_W);
end
dest_sync_reg <= !dest_sync_reg;
end
ts_sync_valid_reg <= 1'b0;
if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin
// store captured source TS
if (TS_W == 96) begin
src_ts_s_sync_reg <= src_ts_s_capt_reg;
end
src_ts_ns_sync_reg <= src_ts_ns_capt_reg;
src_ts_step_sync_reg <= src_ts_step_capt_reg;
ts_sync_valid_reg <= 1'b1;
end
dest_err_int_reg <= dest_err_int_next;
dest_sync_lock_count_reg <= dest_sync_lock_count_next;
dest_sync_locked_reg <= dest_sync_locked_next;
if (output_rst) begin
dest_phase_reg <= '0;
dest_phase_inc_reg <= '0;
dest_sync_reg <= 1'b0;
dest_update_reg <= 1'b0;
dest_err_int_reg <= '0;
dest_sync_lock_count_reg <= '0;
dest_sync_locked_reg <= 1'b0;
ts_sync_valid_reg <= 1'b0;
end
end
logic ts_diff_reg = 1'b0, ts_diff_next;
logic ts_diff_valid_reg = 1'b0, ts_diff_valid_next;
logic [3:0] mismatch_cnt_reg = '0, mismatch_cnt_next;
logic load_ts_reg = 1'b0, load_ts_next;
logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next;
logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next;
logic [1:0] ptp_ovf;
logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next;
logic freq_locked_reg = 1'b0, freq_locked_next;
logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next;
logic ptp_locked_reg = 1'b0, ptp_locked_next;
logic gain_sel_reg = '0, gain_sel_next;
assign locked = ptp_locked_reg && freq_locked_reg && dest_sync_locked_reg;
always_comb begin
period_ns_next = period_ns_reg;
ts_s_next = ts_s_reg;
ts_ns_next = ts_ns_reg;
ts_ns_inc_next = ts_ns_inc_reg;
ts_ns_ovf_next = ts_ns_ovf_reg;
ts_step_next = '0;
ts_diff_next = 1'b0;
ts_diff_valid_next = 1'b0;
mismatch_cnt_next = mismatch_cnt_reg;
load_ts_next = load_ts_reg;
ts_ns_diff_next = ts_ns_diff_reg;
time_err_int_next = time_err_int_reg;
freq_lock_count_next = freq_lock_count_reg;
freq_locked_next = freq_locked_reg;
ptp_lock_count_next = ptp_lock_count_reg;
ptp_locked_next = ptp_locked_reg;
gain_sel_next = gain_sel_reg;
// PTP clock
period_ns_delay_next = period_ns_reg;
if (TS_W == 96) begin
// 96 bit timestamp
ts_ns_inc_next = ts_ns_inc_reg + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
ts_ns_ovf_next = ts_ns_inc_reg - (TS_NS_W+FNS_W)'(period_ns_ovf_reg);
ts_ns_next = ts_ns_inc_reg;
period_ns_ovf_next = (31+FNS_W)'({NS_PER_S, {FNS_W{1'b0}}}) - (31+FNS_W)'(period_ns_reg);
if (!ts_ns_ovf_reg[30+FNS_W]) begin
// if the overflow lookahead did not borrow, one second has elapsed
// increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set
ts_ns_inc_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0] + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
ts_ns_ovf_next[30+FNS_W] = 1'b1;
ts_ns_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0];
ts_s_next = ts_s_reg + 1;
end
end else if (TS_W == 64) begin
// 64 bit timestamp
ts_ns_next = ts_ns_reg + (TS_NS_W+FNS_W)'(period_ns_reg);
end
if (ts_sync_valid_reg) begin
// Read new value
if (TS_W == 96) begin
if (src_ts_step_sync_reg || load_ts_reg) begin
// input stepped
load_ts_next = 1'b0;
ts_s_next = src_ts_s_sync_reg;
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_ns_inc_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_ns_ovf_next[30+FNS_W] = 1'b1;
ts_step_next = 1;
end else begin
// input did not step
load_ts_next = 1'b0;
ts_diff_valid_next = freq_locked_reg;
end
// compute difference
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
ts_diff_next = src_ts_s_sync_reg != dest_ts_s_capt_reg || src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
end else if (TS_W == 64) begin
if (src_ts_step_sync_reg || load_ts_reg) begin
// input stepped
load_ts_next = 1'b0;
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_step_next = 1;
end else begin
// input did not step
load_ts_next = 1'b0;
ts_diff_valid_next = freq_locked_reg;
end
// compute difference
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
ts_diff_next = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
end
end
if (ts_diff_valid_reg) begin
if (ts_diff_reg) begin
if (&mismatch_cnt_reg) begin
load_ts_next = 1'b1;
mismatch_cnt_next = '0;
end else begin
mismatch_cnt_next = mismatch_cnt_reg + 1;
end
end else begin
mismatch_cnt_next = '0;
end
end
if (phase_err_out_valid_reg) begin
// coarse phase/frequency lock of PTP clock
if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin
if (freq_lock_count_reg != 0) begin
freq_lock_count_next = freq_lock_count_reg - 1;
end else begin
freq_locked_next = 1'b0;
end
end else begin
if (&freq_lock_count_reg) begin
freq_locked_next = 1'b1;
end else begin
freq_lock_count_next = freq_lock_count_reg + 1;
end
end
if (!freq_locked_reg) begin
ts_ns_diff_next = $signed(phase_err_out_reg) * 8 * 2**CMP_FNS_W;
ts_diff_valid_next = 1'b1;
end
end
if (ts_diff_valid_reg) begin
// PI control
// gain scheduling
casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5])
5'b01zzz: gain_sel_next = 1'b1;
5'b001zz: gain_sel_next = 1'b1;
5'b0001z: gain_sel_next = 1'b1;
5'b00001: gain_sel_next = 1'b1;
5'b00000: gain_sel_next = 1'b0;
5'b11111: gain_sel_next = 1'b0;
5'b11110: gain_sel_next = 1'b1;
5'b1110z: gain_sel_next = 1'b1;
5'b110zz: gain_sel_next = 1'b1;
5'b10zzz: gain_sel_next = 1'b1;
default: gain_sel_next = 1'b0;
endcase
// time integral of error
case (gain_sel_reg)
1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4);
1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
time_err_int_next = '0;
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
time_err_int_next = '1;
end
// compute output
case (gain_sel_reg)
1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**6);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
period_ns_next = '0;
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
period_ns_next = '1;
end
// adjust period if integrator is saturated
if (time_err_int_reg == 0) begin
period_ns_next = '0;
end else if (~time_err_int_reg == 0) begin
period_ns_next = '1;
end
// locked status
if (!freq_locked_reg) begin
ptp_lock_count_next = 0;
ptp_locked_next = 1'b0;
end else if (gain_sel_reg == 1'b0) begin
if (&ptp_lock_count_reg) begin
ptp_locked_next = 1'b1;
end else begin
ptp_lock_count_next = ptp_lock_count_reg + 1;
end
end else begin
if (ptp_lock_count_reg != 0) begin
ptp_lock_count_next = ptp_lock_count_reg - 1;
end else begin
ptp_locked_next = 1'b0;
end
end
end
end
always_ff @(posedge output_clk) begin
period_ns_reg <= period_ns_next;
period_ns_delay_reg <= period_ns_delay_next;
period_ns_ovf_reg <= period_ns_ovf_next;
ts_s_reg <= ts_s_next;
ts_ns_reg <= ts_ns_next;
ts_ns_inc_reg <= ts_ns_inc_next;
ts_ns_ovf_reg <= ts_ns_ovf_next;
ts_step_reg <= ts_step_next;
ts_diff_reg <= ts_diff_next;
ts_diff_valid_reg <= ts_diff_valid_next;
mismatch_cnt_reg <= mismatch_cnt_next;
load_ts_reg <= load_ts_next;
ts_ns_diff_reg <= ts_ns_diff_next;
time_err_int_reg <= time_err_int_next;
freq_lock_count_reg <= freq_lock_count_next;
freq_locked_reg <= freq_locked_next;
ptp_lock_count_reg <= ptp_lock_count_next;
ptp_locked_reg <= ptp_locked_next;
gain_sel_reg <= gain_sel_next;
// PPS output
pps_reg <= 1'b0;
if (TS_W == 96) begin
if (ts_ns_reg[29]) begin
pps_str_reg <= 1'b0;
end
if (!ts_ns_ovf_reg[30+FNS_W]) begin
pps_reg <= 1'b1;
pps_str_reg <= 1'b1;
end
end
// pipeline
if (PIPELINE_OUTPUT > 0) begin
ts_s_pipe_reg[0] <= ts_s_reg;
ts_ns_pipe_reg[0] <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-TS_FNS_W);
ts_step_pipe_reg[0] <= ts_step_reg;
pps_pipe_reg[0] <= pps_reg;
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
ts_s_pipe_reg[i+1] <= ts_s_pipe_reg[i];
ts_ns_pipe_reg[i+1] <= ts_ns_pipe_reg[i];
ts_step_pipe_reg[i+1] <= ts_step_pipe_reg[i];
pps_pipe_reg[i+1] <= pps_pipe_reg[i];
end
end
if (output_rst) begin
period_ns_reg <= '0;
ts_s_reg <= '0;
ts_ns_reg <= '0;
ts_ns_inc_reg <= '0;
ts_ns_ovf_reg[30+FNS_W] <= 1'b1;
ts_step_reg <= '0;
pps_reg <= '0;
ts_diff_reg <= 1'b0;
ts_diff_valid_reg <= 1'b0;
mismatch_cnt_reg <= '0;
load_ts_reg <= '0;
time_err_int_reg <= '0;
freq_lock_count_reg <= '0;
freq_locked_reg <= 1'b0;
ptp_lock_count_reg <= '0;
ptp_locked_reg <= 1'b0;
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
ts_s_pipe_reg[i] <= '0;
ts_ns_pipe_reg[i] <= '0;
ts_step_pipe_reg[i] <= 1'b0;
pps_pipe_reg[i] <= 1'b0;
end
end
end
endmodule
`resetall