mirror of
https://github.com/fpganinja/taxi.git
synced 2025-12-09 00:48:40 -08:00
393 lines
14 KiB
Systemverilog
393 lines
14 KiB
Systemverilog
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
|
/*
|
|
|
|
Copyright (c) 2016-2025 FPGA Ninja, LLC
|
|
|
|
Authors:
|
|
- Alex Forencich
|
|
|
|
*/
|
|
|
|
`resetall
|
|
`timescale 1ns / 1ps
|
|
`default_nettype none
|
|
|
|
/*
|
|
* Parametrizable combinatorial parallel LFSR/CRC
|
|
*/
|
|
module taxi_lfsr #
|
|
(
|
|
// width of LFSR
|
|
parameter LFSR_W = 31,
|
|
// LFSR polynomial
|
|
parameter logic [LFSR_W-1:0] LFSR_POLY = 31'h10000001,
|
|
// LFSR configuration: 0 for Fibonacci (PRBS), 1 for Galois (CRC)
|
|
parameter logic LFSR_GALOIS = 1'b0,
|
|
// LFSR feed forward enable
|
|
parameter logic LFSR_FEED_FORWARD = 1'b0,
|
|
// bit-reverse input and output
|
|
parameter logic REVERSE = 1'b0,
|
|
// width of data ports
|
|
parameter DATA_W = 8,
|
|
// enable data input and output
|
|
parameter logic DATA_IN_EN = 1'b1,
|
|
parameter logic DATA_OUT_EN = 1'b1
|
|
)
|
|
(
|
|
input wire logic [DATA_W-1:0] data_in,
|
|
input wire logic [LFSR_W-1:0] state_in,
|
|
output wire logic [DATA_W-1:0] data_out,
|
|
output wire logic [LFSR_W-1:0] state_out
|
|
);
|
|
|
|
/*
|
|
|
|
Fully parametrizable combinatorial parallel LFSR/CRC module. Implements an unrolled LFSR
|
|
next state computation, shifting DATA_W bits per pass through the module. Input data
|
|
is XORed with LFSR feedback path, tie data_in to zero if this is not required.
|
|
|
|
Works in two parts: statically computes a set of bit masks, then uses these bit masks to
|
|
select bits for XORing to compute the next state.
|
|
|
|
Ports:
|
|
|
|
data_in
|
|
|
|
Data bits to be shifted through the LFSR (DATA_W bits)
|
|
|
|
state_in
|
|
|
|
LFSR/CRC current state input (LFSR_W bits)
|
|
|
|
data_out
|
|
|
|
Data bits shifted out of LFSR (DATA_W bits)
|
|
|
|
state_out
|
|
|
|
LFSR/CRC next state output (LFSR_W bits)
|
|
|
|
Parameters:
|
|
|
|
LFSR_W
|
|
|
|
Specify width of LFSR/CRC register
|
|
|
|
LFSR_POLY
|
|
|
|
Specify the LFSR/CRC polynomial in hex format. For example, the polynomial
|
|
|
|
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
|
|
|
|
would be represented as
|
|
|
|
32'h04c11db7
|
|
|
|
Note that the largest term (x^32) is suppressed. This term is generated automatically based
|
|
on LFSR_W.
|
|
|
|
LFSR_GALOIS
|
|
|
|
Specify the LFSR configuration, either Fibonacci (0) or Galois (1). Fibonacci is generally used
|
|
for linear-feedback shift registers (LFSR) for pseudorandom binary sequence (PRBS) generators,
|
|
scramblers, and descrambers, while Galois is generally used for cyclic redundancy check
|
|
generators and checkers.
|
|
|
|
Fibonacci style (example for 64b66b scrambler, 0x8000000001)
|
|
|
|
DIN (LSB first)
|
|
|
|
|
V
|
|
(+)<---------------------------(+)<-----------------------------.
|
|
| ^ |
|
|
| .----. .----. .----. | .----. .----. .----. |
|
|
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--'
|
|
| '----' '----' '----' '----' '----' '----'
|
|
V
|
|
DOUT
|
|
|
|
Galois style (example for CRC16, 0x8005)
|
|
|
|
,-------------------+-------------------------+----------(+)<-- DIN (MSB first)
|
|
| | | ^
|
|
| .----. .----. V .----. .----. V .----. |
|
|
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |--+---> DOUT
|
|
'----' '----' '----' '----' '----'
|
|
|
|
LFSR_FEED_FORWARD
|
|
|
|
Generate feed forward instead of feed back LFSR. Enable this for PRBS checking and self-
|
|
synchronous descrambling.
|
|
|
|
Fibonacci feed-forward style (example for 64b66b descrambler, 0x8000000001)
|
|
|
|
DIN (LSB first)
|
|
|
|
|
| .----. .----. .----. .----. .----. .----.
|
|
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--.
|
|
| '----' '----' '----' | '----' '----' '----' |
|
|
| V |
|
|
(+)<---------------------------(+)------------------------------'
|
|
|
|
|
V
|
|
DOUT
|
|
|
|
Galois feed-forward style
|
|
|
|
,-------------------+-------------------------+------------+--- DIN (MSB first)
|
|
| | | |
|
|
| .----. .----. V .----. .----. V .----. V
|
|
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |->(+)-> DOUT
|
|
'----' '----' '----' '----' '----'
|
|
|
|
REVERSE
|
|
|
|
Bit-reverse LFSR input and output. Shifts MSB first by default, set REVERSE for LSB first.
|
|
|
|
DATA_W
|
|
|
|
Specify width of input and output data bus. The module will perform one shift per input
|
|
data bit, so if the input data bus is not required tie data_in to zero and set DATA_W
|
|
to the required number of shifts per clock cycle.
|
|
|
|
Settings for common LFSR/CRC implementations:
|
|
|
|
Name Configuration Length Polynomial Initial value Notes
|
|
CRC16-IBM Galois, bit-reverse 16 16'h8005 16'hffff
|
|
CRC16-CCITT Galois 16 16'h1021 16'h1d0f
|
|
CRC32 Galois, bit-reverse 32 32'h04c11db7 32'hffffffff Ethernet FCS; invert final output
|
|
CRC32C Galois, bit-reverse 32 32'h1edc6f41 32'hffffffff iSCSI, Intel CRC32 instruction; invert final output
|
|
PRBS6 Fibonacci 6 6'h21 any
|
|
PRBS7 Fibonacci 7 7'h41 any
|
|
PRBS9 Fibonacci 9 9'h021 any ITU V.52
|
|
PRBS10 Fibonacci 10 10'h081 any ITU
|
|
PRBS11 Fibonacci 11 11'h201 any ITU O.152
|
|
PRBS15 Fibonacci, inverted 15 15'h4001 any ITU O.152
|
|
PRBS17 Fibonacci 17 17'h04001 any
|
|
PRBS20 Fibonacci 20 20'h00009 any ITU V.57
|
|
PRBS23 Fibonacci, inverted 23 23'h040001 any ITU O.151
|
|
PRBS29 Fibonacci, inverted 29 29'h08000001 any
|
|
PRBS31 Fibonacci, inverted 31 31'h10000001 any
|
|
64b66b Fibonacci, bit-reverse 58 58'h8000000001 any 10G Ethernet
|
|
pcie Galois, bit-reverse 16 16'h0039 16'hffff PCIe gen 1/2
|
|
128b130b Galois, bit-reverse 23 23'h210125 any PCIe gen 3
|
|
|
|
*/
|
|
|
|
localparam INPUT_DATA_IN_STATE = DATA_IN_EN && LFSR_GALOIS && !LFSR_FEED_FORWARD && DATA_W <= LFSR_W;
|
|
localparam INPUT_STATE_IN_DATA = DATA_IN_EN && LFSR_GALOIS && !LFSR_FEED_FORWARD && DATA_W > LFSR_W;
|
|
|
|
localparam DATA_IN_INT = DATA_IN_EN && !INPUT_DATA_IN_STATE;
|
|
|
|
localparam IN_W = INPUT_STATE_IN_DATA ? DATA_W : (LFSR_W+(DATA_IN_INT ? DATA_W : 0));
|
|
localparam OUT_W = LFSR_W+(DATA_OUT_EN ? DATA_W : 0);
|
|
|
|
function [OUT_W-1:0][IN_W-1:0] lfsr_mask();
|
|
logic [LFSR_W-1:0] lfsr_mask_state[LFSR_W-1:0];
|
|
logic [DATA_W-1:0] lfsr_mask_data[LFSR_W-1:0];
|
|
logic [LFSR_W-1:0] output_mask_state[DATA_W-1:0];
|
|
logic [DATA_W-1:0] output_mask_data[DATA_W-1:0];
|
|
|
|
logic [LFSR_W-1:0] state_val;
|
|
logic [DATA_W-1:0] data_val;
|
|
|
|
logic [DATA_W-1:0] data_mask;
|
|
|
|
// init bit masks
|
|
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
|
lfsr_mask_state[i] = '0;
|
|
lfsr_mask_state[i][i] = 1'b1;
|
|
lfsr_mask_data[i] = '0;
|
|
end
|
|
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
|
output_mask_state[i] = '0;
|
|
if (i < LFSR_W) begin
|
|
output_mask_state[i][i] = 1'b1;
|
|
end
|
|
output_mask_data[i] = '0;
|
|
end
|
|
|
|
// simulate shift register
|
|
if (LFSR_GALOIS) begin
|
|
// Galois configuration
|
|
for (data_mask = {1'b1, {DATA_W-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin
|
|
// determine shift in value
|
|
// current value in last FF, XOR with input data bit (MSB first)
|
|
state_val = lfsr_mask_state[LFSR_W-1];
|
|
data_val = lfsr_mask_data[LFSR_W-1];
|
|
data_val = data_val ^ data_mask;
|
|
|
|
// shift
|
|
for (integer j = LFSR_W-1; j > 0; j = j - 1) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
|
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
|
end
|
|
for (integer j = DATA_W-1; j > 0; j = j - 1) begin
|
|
output_mask_state[j] = output_mask_state[j-1];
|
|
output_mask_data[j] = output_mask_data[j-1];
|
|
end
|
|
output_mask_state[0] = state_val;
|
|
output_mask_data[0] = data_val;
|
|
if (LFSR_FEED_FORWARD) begin
|
|
// only shift in new input data
|
|
state_val = '0;
|
|
data_val = data_mask;
|
|
end
|
|
lfsr_mask_state[0] = state_val;
|
|
lfsr_mask_data[0] = data_val;
|
|
|
|
// add XOR inputs at correct indicies
|
|
for (integer j = 1; j < LFSR_W; j = j + 1) begin
|
|
if (LFSR_POLY[j]) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j] ^ state_val;
|
|
lfsr_mask_data[j] = lfsr_mask_data[j] ^ data_val;
|
|
end
|
|
end
|
|
end
|
|
end else begin
|
|
// Fibonacci configuration
|
|
for (data_mask = {1'b1, {DATA_W-1{1'b0}}}; data_mask != 0; data_mask = data_mask >> 1) begin
|
|
// determine shift in value
|
|
// current value in last FF, XOR with input data bit (MSB first)
|
|
state_val = lfsr_mask_state[LFSR_W-1];
|
|
data_val = lfsr_mask_data[LFSR_W-1];
|
|
data_val = data_val ^ data_mask;
|
|
|
|
// add XOR inputs from correct indicies
|
|
for (integer j = 1; j < LFSR_W; j = j + 1) begin
|
|
if (LFSR_POLY[j]) begin
|
|
state_val = lfsr_mask_state[j-1] ^ state_val;
|
|
data_val = lfsr_mask_data[j-1] ^ data_val;
|
|
end
|
|
end
|
|
|
|
// shift
|
|
for (integer j = LFSR_W-1; j > 0; j = j - 1) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
|
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
|
end
|
|
for (integer j = DATA_W-1; j > 0; j = j - 1) begin
|
|
output_mask_state[j] = output_mask_state[j-1];
|
|
output_mask_data[j] = output_mask_data[j-1];
|
|
end
|
|
output_mask_state[0] = state_val;
|
|
output_mask_data[0] = data_val;
|
|
if (LFSR_FEED_FORWARD) begin
|
|
// only shift in new input data
|
|
state_val = '0;
|
|
data_val = data_mask;
|
|
end
|
|
lfsr_mask_state[0] = state_val;
|
|
lfsr_mask_data[0] = data_val;
|
|
end
|
|
end
|
|
|
|
// disable broken linter
|
|
/* verilator lint_off WIDTH */
|
|
if (REVERSE) begin
|
|
// output reversed
|
|
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
|
if (INPUT_STATE_IN_DATA) begin
|
|
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
|
lfsr_mask[i][j] = lfsr_mask_data[LFSR_W-i-1][DATA_W-j-1];
|
|
end
|
|
end else begin
|
|
for (integer j = 0; j < LFSR_W; j = j + 1) begin
|
|
lfsr_mask[i][j] = lfsr_mask_state[LFSR_W-i-1][LFSR_W-j-1];
|
|
end
|
|
if (DATA_IN_INT) begin
|
|
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
|
lfsr_mask[i][j+LFSR_W] = lfsr_mask_data[LFSR_W-i-1][DATA_W-j-1];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
if (DATA_OUT_EN) begin
|
|
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
|
if (INPUT_STATE_IN_DATA) begin
|
|
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
|
lfsr_mask[i+LFSR_W][j] = output_mask_data[DATA_W-i-1][DATA_W-j-1];
|
|
end
|
|
end else begin
|
|
for (integer j = 0; j < LFSR_W; j = j + 1) begin
|
|
lfsr_mask[i+LFSR_W][j] = output_mask_state[DATA_W-i-1][LFSR_W-j-1];
|
|
end
|
|
if (DATA_IN_INT) begin
|
|
for (integer j = 0; j < DATA_W; j = j + 1) begin
|
|
lfsr_mask[i+LFSR_W][j+LFSR_W] = output_mask_data[DATA_W-i-1][DATA_W-j-1];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end else begin
|
|
// output normal
|
|
for (integer i = 0; i < LFSR_W; i = i + 1) begin
|
|
if (INPUT_STATE_IN_DATA) begin
|
|
lfsr_mask[i] = lfsr_mask_data[i];
|
|
end else if (DATA_IN_INT) begin
|
|
lfsr_mask[i] = {lfsr_mask_data[i], lfsr_mask_state[i]};
|
|
end else begin
|
|
lfsr_mask[i] = lfsr_mask_state[i];
|
|
end
|
|
end
|
|
if (DATA_OUT_EN) begin
|
|
for (integer i = 0; i < DATA_W; i = i + 1) begin
|
|
if (INPUT_STATE_IN_DATA) begin
|
|
lfsr_mask[i+LFSR_W] = output_mask_data[i];
|
|
end else if (DATA_IN_INT) begin
|
|
lfsr_mask[i+LFSR_W] = {output_mask_data[i], output_mask_state[i]};
|
|
end else begin
|
|
lfsr_mask[i+LFSR_W] = output_mask_state[i];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
/* verilator lint_on WIDTH */
|
|
endfunction
|
|
|
|
wire [OUT_W-1:0][IN_W-1:0] mask = lfsr_mask();
|
|
|
|
wire [IN_W-1:0] lfsr_in;
|
|
wire [OUT_W-1:0] lfsr_out;
|
|
|
|
if (DATA_IN_EN) begin
|
|
if (INPUT_STATE_IN_DATA) begin
|
|
if (DATA_W == LFSR_W) begin
|
|
assign lfsr_in = data_in ^ state_in;
|
|
end else begin
|
|
if (REVERSE) begin
|
|
assign lfsr_in = data_in ^ {{DATA_W - LFSR_W{1'b0}}, state_in};
|
|
end else begin
|
|
assign lfsr_in = data_in ^ {state_in, {DATA_W - LFSR_W{1'b0}}};
|
|
end
|
|
end
|
|
end else if (INPUT_DATA_IN_STATE) begin
|
|
if (REVERSE) begin
|
|
assign lfsr_in = {{LFSR_W - DATA_W{1'b0}}, data_in} ^ state_in;
|
|
end else begin
|
|
assign lfsr_in = {data_in, {LFSR_W - DATA_W{1'b0}}} ^ state_in;
|
|
end
|
|
end else begin
|
|
assign lfsr_in = {data_in, state_in};
|
|
end
|
|
end else begin
|
|
assign lfsr_in = state_in;
|
|
end
|
|
|
|
for (genvar n = 0; n < OUT_W; n = n + 1) begin
|
|
assign lfsr_out[n] = ^(lfsr_in & mask[n]);
|
|
end
|
|
|
|
assign state_out = lfsr_out[0 +: LFSR_W];
|
|
|
|
if (DATA_OUT_EN) begin
|
|
assign data_out = lfsr_out[LFSR_W +: DATA_W];
|
|
end else begin
|
|
assign data_out = '0;
|
|
end
|
|
|
|
endmodule
|
|
|
|
`resetall
|