
Gisselquist
Technology, LLC

ZIPCPU

SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) ieee.org

June 26, 2023

Gisselquist Technology, LLC Specification 2023/06/26

Copyright (C) 2023, Gisselquist Technology, LLC
This project is free software (firmware): you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/> for a copy.

www.opencores.com Rev. 3.0 ii

Gisselquist Technology, LLC Specification 2023/06/26

Revision History
Rev. Date Author Description

3.01 6/26/2022 Gisselquist Removed the last remains of the (unused)
cpudefs macro file

3.0 6/18/2022 Gisselquist New ZipDMA, debug interface, multi-bus sup-
port and bus width independence

2.01 10/19/2019 Gisselquist Fixed CIS OpCode Table
2.0 1/18/2017 Gisselquist Switched from 32–bit to 8–bit bytes.
1.1 11/28/2016 Gisselquist Moved the ZipSystem address to 0xff000000

base.
1.0 11/4/2016 Gisselquist Major rewrite, includes compiler info
0.91 7/16/2016 Gisselquist Described three more CC bits
0.9 4/20/2016 Gisselquist Modified ISA: LDIHI replaced with MPY,

MPYU and MPYS replaced with MPYUHI, and
MPYSHI respectively. LOCK instruction now
permits an intermediate ALU operation.

0.8 1/28/2016 Gisselquist Reduced complexity early branching
0.7 12/22/2015 Gisselquist New Instruction Set Architecture
0.6 11/17/2015 Gisselquist Added graphics to illustrate pipeline discussion.
0.5 9/29/2015 Gisselquist Added pipelined memory access discussion.
0.4 9/19/2015 Gisselquist Added DMA controller, improved stall informa-

tion, and self–assessment info.
0.3 8/22/2015 Gisselquist First completed draft
0.2 8/19/2015 Gisselquist Still Draft, more complete
0.1 8/17/2015 Gisselquist Incomplete First Draft

www.opencores.com Rev. 3.0 iii

Gisselquist Technology, LLC Specification 2023/06/26

Contents

Page

1 Introduction . 1

2 Key Features . 2

3 CPU Architecture . 4
3.1 Instruction Set Architecture . 4

3.1.1 Operating Modes . 4
3.1.2 Register Set . 5
3.1.3 The Status Register, CC . 5
3.1.4 Instruction Format . 9
3.1.5 Instruction OpCodes . 10
3.1.6 Conditional Instructions . 10
3.1.7 Modifying Conditions . 10
3.1.8 Operand B . 10
3.1.9 Address Modes . 13
3.1.10 Move Operands . 13
3.1.11 Multiply Operations . 13
3.1.12 Divide Unit . 14
3.1.13 Compressed Instructions . 15
3.1.14 BREAK, Bus LOCK, SIM, and NOOP Instructions 16
3.1.15 Floating Point . 17
3.1.16 Derived Instructions . 17

3.2 Interrupt Handling . 17
3.3 Memory Architecture . 21

3.3.1 Bus Standards . 21
3.3.2 Memory Model . 22

3.4 Debug Interface . 22

4 Operation . 24
4.1 CRT0 . 24
4.2 System High . 24
4.3 A Programmable Delay . 26
4.4 Traditional Interrupt Handling . 26
4.5 Idle Task . 28
4.6 Context Switch . 29

5 Tool Suite and Application Binary Interface . 34
5.1 Executable File Format . 34
5.2 Stack . 34
5.3 Relocations . 35
5.4 Call format . 35
5.5 Built-ins . 35
5.6 Linker Scripts . 36

5.6.1 Memory Types . 36
5.6.2 The Entry Function . 37
5.6.3 Bootloader Tags . 37
5.6.4 Other required linker symbols . 38

www.opencores.com Rev. 3.0 iv

Gisselquist Technology, LLC Specification 2023/06/26

5.7 Loading ZipCPU Programs . 38
5.8 Starting a ZipCPU program . 39

5.8.1 CRT0 . 39
5.8.2 The Bootloader . 39

6 Debug Register Addressing . 40
6.1 Debug Port Registers . 40

6.1.1 Breakpoint Handling . 41
6.2 ZipSystem Registers . 41

7 ZipSystem Peripherals . 45
7.1 Interrupt Controller(s) . 46

7.1.1 Timer Register . 48
7.1.2 ZipJiffies . 48
7.1.3 Watchdog Timer . 49
7.1.4 Bus Watchdog . 49

7.2 Performance Counters . 50
7.2.1 ZipDMA Controller . 51

8 Integration . 53
8.1 ZipCPU Parameters . 53
8.2 Clocks . 56
8.3 I/O Ports . 56
8.4 Wishbone Datasheets . 58
8.5 AXI/AXI-Lite Datasheets . 62

www.opencores.com Rev. 3.0 v

Gisselquist Technology, LLC Specification 2023/06/26

Figures

Figure Page

2.1. ZipCPU internal pipeline architecture . 3

3.1. ZipCPU Register File . 5
3.2. Zip Instruction Set Format . 9
3.3. ZipCPU Compressed Instruction Set (CIS) Format 15
3.4. NOOP/Break/LOCK Instruction Format . 16
3.5. NOOP/SIM Sub-Instruction Format . 17

8.1. Trace Port encodings . 58

www.opencores.com Rev. 3.0 vi

Gisselquist Technology, LLC Specification 2023/06/26

Tables

Table Page

3.1. The form of a generic ZipCPU instruction . 4
3.2. Condition Code Register Bit Assignment . 6
3.3. ZipCPU OpCodes . 11
3.4. Conditions for conditional operand execution . 12
3.5. An example of a double conditional . 12
3.6. Modifying conditions . 12
3.7. Bit allocation for Operand B . 13
3.8. Multiply implementation choices . 14
3.9. CIS OpCodes . 15
3.10. Derived Instructions . 18
3.11. Derived Instructions, continued . 19
3.12. Derived Instructions, continued . 20
3.13. Derived Instructions, continued . 21

4.1. Setting up a stack frame and starting the CPU . 25
4.2. Waiting on a timer . 26
4.3. Traditional Interrupt handling . 27
4.4. Example Idle Task in Assembly . 28
4.5. Example Idle Task in C . 29
4.6. Checking for whether the user task needs our attention 30
4.7. Example Storing User Task Context . 31
4.8. Example Restoring User Task Context . 32

6.1. ZipSystem Debug Registers . 41
6.2. Debug Control Register Bits . 42
6.3. Debug Register Addresses . 43

7.1. ZipSystem Internal/Peripheral Registers . 45
7.2. Interrupt Controller Register Bits . 47
7.3. Timer Register Bits . 48
7.4. Jiffies Register Bits . 49
7.5. Counter Register Bits . 50
7.6. DMA Control Register Bits . 51
7.7. ZipDMA Word Size Enumeration . 52

8.1. List of Clocks . 56
8.2. CPU Master Wishbone I/O Ports . 57
8.3. CPU Debug Wishbone I/O Ports . 57
8.4. I/O Ports . 58
8.5. Trace port flag bits . 59
8.6. Profiler outputs . 59
8.7. Wishbone Datasheet for the Debug Interface . 60
8.8. Wishbone Datasheet for the CPU as Master . 61

www.opencores.com Rev. 3.0 vii

Gisselquist Technology, LLC Specification 2023/06/26

Preface

Many people have asked me why I am building the ZipCPU. ARM processors are cheap and effective
and ASIC processors will always have a better performance than an FPGA soft-core processor. Xilinx
makes and markets Microblaze, Altera Nios, and both have better toolsets than the ZipCPU. The
RISC–V ISA is now well known among soft-core circles. So, why build a new processor?

The easiest, most obvious answer is the simple one: Because I can.
There’s more to it though. There’s a lot of things that I would like to do with a processor, and

I want to be able to do them in a vendor independent fashion. First and foremost, I would like
to be able to both simulate this processor and place it inside an FPGA. Without paying royalties,
gate level ARM simulations are out of the question. I would also like to be able to generate Verilog
code, both for the processor and the system it sits within, that can run equivalently on both Xilinx,
Altera, and Lattice chips, and that can be easily ported from one manufacturer’s logic architecture
to another. Even more, before purchasing a chip or a board, I would like to know that my soft
core works. That means that I’d like to build a test bench to test components with, and Verilator
is my chosen simulation tool. This forces me to use all Verilog, and it prevents me from using any
proprietary cores. For this reason, ARM, Microblaze and Nios are out of the question.

Why not OpenRISC? Because the ZipCPU has different goals. OpenRISC is designed to be a
full featured CPU. The ZipCPU was designed to be a simple, resource friendly, CPU. The result is
that it is easy to get a ZipCPU program running on bare hardware for a special purpose application–
such as what FPGAs were designed for, although getting a full featured operating system on the
ZipCPU remains one of my eventual goals. Further, the OpenRISC ISA is very complex, defining
over 200 instructions (even though most of them have has never been fully implemented . . .). The
ZipCPU on the other hand has only a small handful of instructions, and all but the Floating Point
instructions have already been fully implemented.

My final reason is that I’m building the ZipCPU as a learning experience. The ZipCPU has
allowed me to learn a lot about how CPUs work on a very micro level. For the first time, I am
beginning to understand many of the Computer Architecture lessons from years ago. Even at its
third version, the ZipCPU has continued to teach me more advanced topics such as verification and
regression testing.

To summarize: Because I can, because it is open source, because it is light weight, and as an
exercise in learning.

Since building the ZipCPU initially in 2015, I’ve continued to work with it and update it for
many of the reasons above. Now, however, I have a couple of new reasons for using the ZipCPU as
well. For example, the ZipCPU has now formed the basis for many contracts and as a portion of the
deliverables within those contracts. The ZipCPU has also been a focus for learning about Verilog
simulation environments, formal verification, and how various bus structures work. For example,
starting with version 3.0, the ZipCPU now supports both AXI4 and AXI4-lite interfaces.

Finally, let me say that even though the ZipCPU project has been unfunded, the work that I
have placed into it has been paid back nicely. While working on the ZipCPU, I have learned how
to build a back end for GCC. I later received a contract for building a special GCC work-around to
(post build) “fix” a RISC–V processor that had made it into silicon, but with some instructions not
working. Also, the ZipCPU’s instruction fetch routines have formed the basis for a scatter gather

www.opencores.com Rev. 3.0 viii

Gisselquist Technology, LLC Specification 2023/06/26

DMA implementation, for a scripted SONAR transmitter, and will likely form the basis in the near
future for a small (I2C+SPI) telemetry system. These facts now witness to the truth of the Proverb,
“In all labour there is profit: but the talk of the lips tendeth only to penury.” (Prov 14:23)

Dan Gisselquist, Ph.D.

www.opencores.com Rev. 3.0 ix

Gisselquist Technology, LLC Specification 2023/06/26

1.

Introduction

The ZipCPU is a soft–core CPU. It has been designed to be small in area, with only a minimal
instruction set.

The basic philosophy of the ZipCPU is driven from a desire to minimize logic, while maintaining
the ability to be a fully pipelined, 32–bit CPU capable of running a modern operating system (sans
MMU). It should run nicely in a small area, while maintaining compatibility with many FPGA
architectures.

You might think of the ZipCPU as a poor man’s alternative to the larger architectures prevalent
today.

www.opencores.com Rev. 3.0 1

Gisselquist Technology, LLC Specification 2023/06/26

2.

Key Features

Some of the Key Features of the ZipCPU are listed below:

• 32–bit Architecture: All registers are 32-bits, addresses are 32-bits, instructions are 32-bits
wide, etc.

• A RISC CPU. There is no microcode for executing instructions. Where possible, all instruc-
tions have been designed to be completed in a single clock cycle.

• A Load/Store architecture. Only load and store instructions can access memory.

• There are no I/O instructions. Attached peripherals are memory mapped, and external to the
CPU.

• Big Endian

• A compressed instruction subset provides some amount of instruction compression for the most
commonly used instructions.

• A Von-Neumann architecture. Both instructions and data share a common addressing space.

• A pipelined architecture, having stages for Prefetch, Decode, Read-Operand, a combined
stage containing theALU,Memory, andDivide units, and then the finalWrite-back stage.
See Fig. 2.1 for a diagram of this structure.

• Completely open source, licensed and released under the GPL v3.

• The ZipCPU has several memory controllers. These support Wishbone, AXI4–lite, and AXI4
bus structures, and may or may not provide a cache of user configurable size depending upon
its configuration.

• Bus-width agile. The ZipCPU’s memory controllers can handle any bus width of at least
32-bits. Bus width configuration is parameterizable.

• There is an (optional) external interface for debugging the CPU. This allows an external
debugger the ability to start, and stop the CPU, read and adjust its registers, or to step
through any piece of software one instruction at a time.

• The ZipCPU is also highly configurable, having optional support for clock gating, an external
trace port, profiler, multi-tasking, multiple multiply configurations, divide instruction support,
early branching, and more.

www.opencores.com Rev. 3.0 2

Gisselquist Technology, LLC Specification 2023/06/26

Figure 2.1: ZipCPU internal pipeline architecture

www.opencores.com Rev. 3.0 3

Gisselquist Technology, LLC Specification 2023/06/26

3.

CPU Architecture

This chapter describes the general architecture of the ZipCPU. It starts with a description of the
ZipCPU’s instruction set. From there, it moves on to discuss how the ZipCPU handles interrupts,
its pipeline, and then the various memory controller options available to it.

3.1 Instruction Set Architecture

The general form of (most) ZipCPU instructions is shown in Tbl. 3.1. In other words, the ZipCPU
will apply some operation, OP, to a register plus an immediate, Rb+#Imm, and a second register, Ra,
while leaving the result in the same second register, Ra. If the condition C is present, the instruction
will only complete if the condition holds.

Unconditional ALU operations will set the condition code flags based upon applying the operation
to Rb+#Imm and Ra. Any overflow or carry conditions due to adding Rb and the immediate together
will be lost.

If the source register, Rb, is the program counter register, PC, than the immediate will be multi-
plied by four prior to adding it’s value to PC to generate the Rb value.

The next several sections will go into detail describing the register set, instruction encoding,
available operations, condition codes, and more.

3.1.1 Operating Modes

Before introducing the register set, it’s important to know that the ZipCPU supports two separate
operating modes, a supervisor mode and a user mode. These modes are connected to interrupt han-
dling: when operating in user mode, interrupts are always enabled.1 When operating in supervisor
mode, interrupts are always disabled.

The CPU boots into supervisor mode. The supervisor program can then cause the CPU to switch
to user mode by executing a special RTU (return to userspace) instruction. When the CPU then
encounters either an interrupt or a fault, the CPU will return to supervisor mode at the instruction
where it left off. This also means that the ZipCPU does not support any interrupt vectors.

1Interrupts may still be disabled in the interrupt controller.

OP.C Rb+#Imm,Ra

Table 3.1: The form of a generic ZipCPU instruction

www.opencores.com Rev. 3.0 4

Gisselquist Technology, LLC Specification 2023/06/26

Supervisor Register Set User Register Set
#’s 0-15 #’s 16-31

sR0(LR) sR8 uR0(LR) uR8
sR1 sR9 uR1 uR9
sR2 sR10 uR2 uR10
sR3 sR11 uR3 uR11
sR4 sR12(FP) uR4 uR12(FP)
sR5 sSP uR5 uSP
sR6 sCC uR6 uCC
sR7 sPC uR7 uPC

Interrupts Disabled Interrupts Enabled

Figure 3.1: ZipCPU Register File

3.1.2 Register Set

The ZipCPU has two sets of sixteen 32-bit registers, one for supervisor mode and the other for user
mode. These registers are shown in Fig. 3.1. Any switch from supervisor mode to user mode or
back will also cause a sudden shift from one register set to the other. A special form of the MOV

instruction exists to allow the supervisor access to user registers, but otherwise the two register
sets don’t interact at all. This effectively means that the compiler knows nothing about the second
register set.

Registers in either set may be referenced as R0 through R15. When running in supervisor mode,
MOV operand references to uR0 through uR15 will be understood by the assembler as references to user
registers. We’ll discuss this further in subsection. 3.1.10. In all other cases, any register reference
refers to the currently active set.

Because the register sets are maintained when not in use, switching operating modes has the
consequence that the CPU maintains the appearance of continuing where it left off when it last
switched modes. Similarly, the supervisor may adjust the user register set to perform a task swap if
and when desired.

Two registers in each set are special within the hardware. These are the Program Counter
(PC, or R15), and the status register (CC, or R14). When using the compressed instruction set
representation, offsets to R13 are optimized within the instruction set to facilitate stack pointer
accesses. All other registers are identical in their hardware functionality.

By convention, the tool suite assigns a special meaning to three other registers. As mentioned
above, the compiler reserves R13 for the stack pointer. This also has the mnemonic SP. By convention,
R0 is used to maintain the return address of a subroutine, sometimes called the link register or LR.
Finally, if the compiler requires a frame pointer, then R12 (or FP) is available to it for that purpose.

3.1.3 The Status Register, CC

As mentioned above, the status register (CC) is special. The bit fields within this register have
special meaning, and so it really requires its own section. These special bit-fields are shown in
Fig. 3.2, and occupy the lower sixteen bits of the status register.

www.opencores.com Rev. 3.0 5

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31. . . 23 R Reserved
22. . . 16 R/W Reserved
15 W Clear D-Cache command bit, always reads zero
14 W Clear I-Cache command bit, always reads zero
13 R Set if processing the first half of a compressed instruction
12 R (Reserved for) Floating Point Exception
11 R Division by Zero Exception
10 R Bus-Error Flag
9 R Trap Flag (or user interrupt). Cleared on any return to user

mode.
8 R Illegal Instruction Flag
7 R/W Break–Enable (sCC), or user break (uCC) encountered
6 R/W Step
5 R/W User mode / Global Interrupt Enable (GIE) bit
4 R/W Sleep. When GIE is also set, the CPU waits for an interrupt.
3 R/W Overflow flag. The last ALU operation produced an arithmetic

overflow.
2 R/W Negative. The sign bit was set as a result of the last ALU in-

struction.
1 R/W Carry. The last ALU operation set the carry bit.
0 R/W Zero. The last ALU operation produced a zero.

Table 3.2: Condition Code Register Bit Assignment

www.opencores.com Rev. 3.0 6

Gisselquist Technology, LLC Specification 2023/06/26

Of the condition codes, the bottom four bits are the current flags from the last ALU instruction
that set flags. These are: Zero (Z), Carry (C), Negative (N), and Overflow (V). These flags maintain
their usual definition from other CPUs that use them, for all but the shift right instructions. For
example, if the result of the last ALU operation is zero, the ’Z’ flag will be set. If the result of the
last ALU operation sets the most significant bit, then the ’N’ flag will be set. Carry is set according
to unsigned operation overflow, and the overflow bit is set according signed arithmetic overflow.

Local and arithmetic shift operations also use the carry bit to capture the last bit shifted off the
register. This functionality isn’t well supported by the compiler, but can be used in assembly to
implement extended shift instructions.

We’ll walk through the next many bits of the status register in order from least significant to
most significant.

4. Bit 4 is the sleep bit. When set, the CPU will enter into a sleep mode. The CPU will wake
up and exit from sleep mode on any interrupt if interrupts are enabled.

This means that this bit can be used to implement two functionalities. There’s the WAIT for
interrupt instruction, whereby the CPU simply sleeps as discussed above in user mode. This
bit can also be used to HALT the CPU should it ever be set while the CPU is in supervisor
mode. (The WAIT instruction will place the CPU in user mode, independent of the mode it
was in when executed.)

If the OPT CLKGATE parameter is set, the CPU will also turn off its clock once it finishes entering
sleep mode.

5. Bit 5 is a global interrupt enable bit (GIE). When this bit is set, interrupts will be enabled,
otherwise they are disabled. When interrupts are disabled, the CPU will be in supervisor
mode, otherwise it is in user mode. This bit also forms the fifth bit of any register address,
controlling which register set the CPU reads from by default. Thus, to execute a context
switch from supervisor mode to user mode, all one needs to do is to set this bit. Then, on a
subsequent interrupt or CPU exception, this bit will be automatically cleared and the CPU
will return to supervisor mode.

Logic within the CPU will prevent user mode software from setting the sleep register and
clearing the GIE register at the same time, with clearing the GIE register taking precedence.
This keeps the user from halting the CPU, thus restricting the halt instruction to supervisor
mode only.

Whenever read, the supervisor CC register will always have this bit cleared, whereas the user
CC register will always read this bit set.

6. Bit 6 is a step bit in the user’s CC register, and zero in the supervisor’s CC register. It can only
be read or set from supervisor mode. When set, any switch to user mode will limit processing
in user mode to a single instruction before returning to supervisor mode.

There are two exceptions to this single instruction rule: a usermode program executing a
compressed instruction will complete the full two-instruction sequence, and any usermode
program executing a LOCK instruction will complete an additional three instruction atomic
sequence before concluding the step instruction.

This functionality was added to allow one software program to debug a second program running
in user space.

www.opencores.com Rev. 3.0 7

Gisselquist Technology, LLC Specification 2023/06/26

While the CPU can also be stepped in supervisor mode, the supervisor’s step bit is not used
in that process. Rather, that is accomplished via the CPU debug port.

7. Bit 7 is a break bit.

In the user register set, this bit is a status bit that will be set if the user mode program en-
counters a BREAK instruction. It will automatically be cleared upon any release from interrupt.

In the supervisor register set, this becomes the break enable control bit. This bit determines
if a usermode BREAK instruction should generate an external break (break enabled), or just
return processing to the supervisor mode.

A break in supervisor mode will also cause an “external break”, independent of the break
enable bit.

External breaks are handled by the CPU’s wrapper. If the CPU is set to START HALTED, such
breaks will halt the CPU. Otherwise, they will cause the CPU to reboot.

This functionality was added to enable a (potential) external debugger to set and manage
software breakpoints.

8. Bit 8 is an illegal instruction bit. When the CPU attempts to execute either a non-existent
instruction, or an instruction from an address that produced a bus error when read, this bit will
get set. If set in user mode, the CPU will switch to supervisor mode. If an illegal instruction
is encountered in supervisor mode, the CPU will issue an external break as described by the
break handling section above.

9. Bit 9 is a trap bit. This bit is shared between both user and supervisor CC registers. It may
be set by a usermode process to request a switch to supervisor mode–a soft interrupt if you
will. It is then cleared upon any subsequent return to user space.

This bit allows a supervisor mode process to determine, following any switch to supervisor
mode, if the switch was caused by a user request.

10. Bit 10 is a bus error flag. This bit will be set following any bus error return response to either
a load or store instruction.

If such a bus error is encountered in user mode, then this bit will be set in the user’s CC
register and the CPU will switch to supervisor mode. It will be cleared by any subsequent
return to user mode instruction.

If the bus error is instead encountered in supervisor mode, then this bit will be set in the
supervisor’s CC register and the CPU will generate an external break.

Bus errors encountered by the instruction fetch pipeline are returned as illegal instructions,
and therefore will not affect this bit.

11. Bit 11 is a division by zero exception flag. This operates in a fashion similar to the bus
error flag. If the user attempts to use the divide instruction with a zero denominator, the
system will switch to supervisor mode and set this bit in the user CC register. The bit is
automatically cleared upon any return to user mode, although it can also be manually cleared
by the supervisor. In a similar fashion, if the supervisor attempts to execute a divide by
zero, the CPU will issue an external break and set this division by zero exception flag in the
supervisor’s CC register for the debugger to inspect. This bit will automatically be cleared

www.opencores.com Rev. 3.0 8

Gisselquist Technology, LLC Specification 2023/06/26

012345678910111213141516171819202122232425262728293031

0 OpCode 0 18-bit Signed Immediate

0 DR Cnd 1 BR 14-bit Signed Immediate
Standard

{

0 5’hd A BR B 13-bit Signed ImmediateMOV
{

0 4’hc 23-bit Signed ImmediateLDI
{

0 3’h7 11 xxx IgnoredNOOP
{

Figure 3.2: Zip Instruction Set Format

upon any CPU reset, or it may be manually cleared by the external debugger writing to this
register.

12. Bit 12 is reserved for a hardware accelerated floating point error. This will operate in a similar
fashion to both the bus error and the division by zero flags, only it will be set upon a (yet to
be determined) floating point error.

13. Bit 13 is the compressed instruction set phase register. This bit will be set on the first
instruction of any compressed instruction set pair. It can be used to capture whether or not a
CPU fault occurred following the first instruction in a compressed instruction set pair. This
is a status bit only.

The CPU (currently) has no ability to restart an operation in the middle of a compressed
instruction set pair.

14. Bit 14 is a clear instruction cache bit. The supervisor may write a one to this bit in order to
cause the CPU instruction cache to be cleared. The bit always reads as a zero.

Writing to this bit from user mode has no effect.

15. Bit 15 is a clear data cache bit. The supervisor may write a one to this bit in order to cause
the CPU data cache to be cleared. The bit always reads as a zero.

Writing to this bit from user space has no effect.

The upper 16-bits of this register a reserved.

3.1.4 Instruction Format

In general, ZipCPU instructions fit in one of the formats shown in Fig. 3.2. The basic format is that
some operation, defined by the OpCode, is applied if a condition, Cnd, is true in order to produce a
result which is placed in the destination register (DR). The destination register also forms the ”A”
operand of any instruction. The “B” operand is formed from either an 18–bit signed immediate, or
a 14–bit signed immediate plus the value contained within a second register.

There are a couple of exceptions to this general instruction model. The first is the MOV instruction,
which steals bits 13 and 18 to allow supervisor access to user registers. In supervisor mode, these
are set to one to reference user registers, zero otherwise. They are ignored in user mode. The

www.opencores.com Rev. 3.0 9

Gisselquist Technology, LLC Specification 2023/06/26

second exception is the load 23–bit signed immediate instruction (LDI). This instruction accepts no
conditions and uses only a 4-bit opcode. The third exception is the NOOP instruction group, encoding
the BREAK, LOCK, SIM, and NOOP instructions. These instructions ignore their register and immediate
settings. Further, the immediate bits used by these opcodes are available for simulation or debug
facilities, but otherwise ignored by the CPU. Finally, there is an (optional) compressed instruction
format that we’ll cover later.

3.1.5 Instruction OpCodes

32 possible instructions can be generated from a 5–bit opcode field. Tbl. 3.3. shows how these
32–values have been allocated to implement 29 instructions. An additional six instruction opcodes
are reserved for a (potential, future, optional) single precision floating point accelerator.

3.1.6 Conditional Instructions

Most, although not quite all, instructions may be conditionally executed. The 23–bit load immediate
instruction, together with the special instructions, NOOP, SIM, BREAK, and LOCK, are the exceptions
to this rule. All other instructions may be conditionally executed.

From the four condition code flags, eight conditions are defined, as shown in Tbl. 3.4. There are
no condition codes for either less than or equal, or for greater than, whether signed or unsigned. In
a similar fashion, there is no condition code for not V. Ways of handling non–supported conditions
are discussed in Sec. 3.1.7.

With the exception of CMP and TST instructions, conditionally executed instructions will not fur-
ther adjust the condition codes. This allows conditional instruction sequences to be strung together.
Conditional CMP or TST instructions will adjust conditions whenever they are executed. In this way,
multiple conditions may be evaluated without branches, creating a sort of logical and–but only if
all the conditions are the same. For example, to do something if R0 is one and R1 is two, one might
implement the assembly shown in Tbl. 3.5. This ability to generate double conditions is used heavily
by the compiler when comparing 64-bit numbers together.

The real utility of conditionally executed instructions is that, unlike conditional branches, con-
ditionally executed instructions will not clear the pipeline if they are not executed.

3.1.7 Modifying Conditions

A quick look at the list of conditions supported by the ZipCPU and listed in Tbl. 3.4 reveals that
the ZipCPU does not have a full set of conditions. Tbl. 3.6, therefore, shows examples of how these
unsupported conditions can be created simply by adjusting the compare instruction, for no extra
cost in clocks. Care needs to be taken to ensure that adding one to any immediates, as shown above,
does not overflow the size of the immediate field.

Many of these alternate conditions are chosen automatically by the ZipCPU compiler.

3.1.8 Operand B

Many instruction forms have a 19-bit source “Operand B”, or OpB for short, associated with them.
This “Operand B” is shown in Fig. 3.2 as part of the standard instruction format. For all but the
MOV instruction, an Operand B is either equal to a register plus a 14–bit signed immediate offset, or

www.opencores.com Rev. 3.0 10

Gisselquist Technology, LLC Specification 2023/06/26

OpCode A-Reg Instruction Sets CC

5’h00 SUB Subtract
5’h01 AND Bitwise And
5’h02 ADD Add two numbers
5’h03 OR Bitwise Or Y
5’h04 XOR Bitwise Exclusive Or
5’h05 LSR Logical Shift Right
5’h06 LSL Logical Shift Left
5’h07 ASR Arithmetic Shift Right
5’h08 BREV Bit Reverse B operand into result
5’h09 LDILO Load Immediate Low N
5’h0a MPYUHI Upper 32 of 64 bits from an unsigned 32x32 multiply
5’h0b MPYSHI Upper 32 of 64 bits from a signed 32x32 multiply Y
5’h0c MPY Lower 32 of 64 bits from a 32x32 bit multiply
5’h0d MOV Move OpB into Ra N
5’h0e DIVU R0-R13 Divide, unsigned Y
5’h0f DIVS R0-R13 Divide, signed

5’h10 CMP Compare (Ra-OpB) to zero Y
5’h11 TST Test (AND w/o setting result)
5’h12 LW Load a 32-bit word from memory (OpB) into Ra
5’h13 SW Store a 32-bit word from Ra into memory at (OpB)
5’h14 LH Load 16-bits from memory (opB) into Ra, clear upper 16 bits N
5’h15 SH Store the lower 16-bits of Ra into memory at (OpB)
5’h16 LB Load 8-bits from memory (OpB) into Ra, clear upper 24 bits
5’h17 SB Store the lower 8-bits of Ra into memory at (OpB)

5’h18/9 LDI Load 23–bit signed immediate N

5’h1a FPADD R0-R13 (Reserved for) Floating point add
5’h1b FPSUB R0-R13 (Reserved for) Floating point subtract
5’h1c FPMPY R0-R13 (Reserved for) Floating point multiply Y
5’h1d FPDIV R0-R13 (Reserved for) Floating point divide
5’h1e FPI2F R0-R13 (Reserved for) Convert integer to floating point
5’h1f FPF2I R0-R13 (Reserved for) Convert floating point to integer

5’h1c BREAK None(15) Debugger break point
5’h1d LOCK None(15) Begin an atomic access sequence N
5’h1e SIM None(15) Simulation–only instruction
5’h1f NOOP None(15)

Table 3.3: ZipCPU OpCodes

www.opencores.com Rev. 3.0 11

Gisselquist Technology, LLC Specification 2023/06/26

Code Mnemonic Condition
3’h0 None Always execute the instruction
3’h1 .Z Zero. Only execute when ‘Z’ is set
3’h2 .LT Less than. Only execute when ‘N’ is set
3’h3 .C Carry set (Also known as less-than unsigned)
3’h4 .V Overflow. Only execute when ‘V’ is set
3’h5 .NZ Not zero. Only execute when ‘Z’ is clear
3’h6 .GE Greater than or equal. Executes when ‘N’ is clear
3’h7 .NC Not carry (also known as greater-than or equal, unsigned)

Table 3.4: Conditions for conditional operand execution

CMP 1,R0

; Condition codes are now set based upon R0-1
CMP.Z 2,R1

; If R0 6= 1, conditions are unchanged, Z is still false.
; If R0 = 1, conditions are now set based upon R1-2.
; Now some instruction could be done based upon the conjunction
; of both of these conditions.
; While we use the example of a SW, it could easily be any other instruction.
SW.Z R0,(R2)

Table 3.5: An example of a double conditional

Unsupported condition Modified Name

CMP Imm,Ry

BLE label

CMP 1+Imm,Ry

BLT label

Less-than or equal (signed, Z or N set)

CMP Rx,Ry

BLE label

CMP Rx,Ry

BLT label

BZ label

Less-than or equal (signed, Z or N set)

CMP Imm,Ry

BGT label

CMP 1+Imm,Ry

BGE label

Greater-than (immediate)

CMP Rx,Ry

BGT label

CMP Ry,Rx

BLT label

Greater-than (register)

CMP Imm,Ry

BLEU label

CMP 1+Imm,Ry

BC label

Less-than or equal, unsigned immediate

CMP Rx,Ry

BLEU label

CMP Ry,Rx

BNC label

Less-than or equal unsigned register

CMP Imm,Ry

BGTU label

CMP 1+Imm,Ry

BNC label

Greater-than unsigned (immediate)

CMP Rx,Ry

BGTU label

CMP Ry,Rx

BC label

Greater-than unsigned

Table 3.6: Modifying conditions

www.opencores.com Rev. 3.0 12

Gisselquist Technology, LLC Specification 2023/06/26

0123456789101112131415161718

0 18-bit Signed Immediate

1 Reg 14-bit Signed Immediate

Table 3.7: Bit allocation for Operand B

an 18–bit signed immediate offset by itself. This value is encoded as shown in Tbl. 3.7. This format
represents a deviation from many other RISC architectures that use R0 to represent zero, such as
OpenRISC and RISC-V. Here, instead, we use a bit within the instruction to note whether or not
an immediate is used. The result is that ZipCPU instructions can encode larger immediates within
their instruction space.

In those cases where a fourteen or eighteen bit immediate doesn’t make sense, such as for LDILO,
the extra bits associated with the immediate are simply ignored. (This rule does not apply to the
shift instructions, ASR, LSR, and LSL–which all use all of their immediate bits.)

3.1.9 Address Modes

Load and store instructions use the OpB field for their address, whether source or destination. As a
result, the ZipCPU can support both register plus immediate addressing, as well as a limited amount
of immediate addressing.

3.1.10 Move Operands

The MOV instruction is the exception to operand B encoding, with the purpose of providing the
supervisor access to user mode registers while in supervisor mode. The two bits, shown as A and B

in Fig. 3.2 above, are designed to contain the high order bit of the 5–bit register index. If the B bit
is a ‘1’, the source operand comes from the user register set. If the A bit is a ‘1’, the destination
operand is in the user register set. A zero bit indicates the current register set.

This encoding has been chosen to keep the compiler simple. For the most part, the extra bits
are quietly set to zero. Special assembly instructions, or particular compiler built–in instructions,
can be used to get access to these cross register set move instructions.

Further, the MOV instruction lacks the full OpB capability to use a register or a register plus
immediate as a source, since a load immediate instruction, LDI, already exists. As a result, all
moves come from a register plus a potential offset.

This also creates a situation where a MOV instruction may be used like a 3-operand ADD instruction.
Because the MOV instruction doesn’t affect the condition codes, the compiler may use this instruction
during address calculation.

3.1.11 Multiply Operations

The ZipCPU supports three separate 32x32-bit multiply instructions: MPY, MPYUHI, and MPYSHI.
The first of these produces the low 32-bits of a 32x32-bit multiply result. The second two produce
the upper 32-bits. MPYUHI produces the upper 32-bits assuming the multiply was unsigned, whereas

www.opencores.com Rev. 3.0 13

Gisselquist Technology, LLC Specification 2023/06/26

OPT MULTIPLY Implementation

0 No multiply support
1 Single clock multiply. This implementation neither registers the inputs to the mul-

tiplier, nor the output prior to the ALU output result.
2 Two clock multiply. This implementation registers the inputs to the multiply unit,

but the outputs are not registered prior to the ALU mux.
3 Three clock multiply. This implementation registers the inputs to the multiply unit

as well as the outputs immediately following the multiply and prior to the final ALU
register. This is the workhorse of most FPGA DSP implementations, although it
does require a DSP or DSP combination capable of implementing a 32x32 multiply
in a single clock cycle.

4 Four clock multiply. This implementation splits the multiply into multiple sixteen
bit multiplies in a FOIL (first, outer, inner, last) binomial multiplication fashion.
The first clock registers the inputs. The second clock calculates all FOIL values,
and the third clock adds the results together to form a full 64-bit multiply result.
This method is appropriate for DSP implementations that can handle 16x16 bit
multiplies but cannot be combined to implement a 32x32 bit multiply.

5+ Slow multiply. This implementation uses (roughly) 32-cycles to achieve a full mul-
tiply result. This is the one implementation that does not use hardware multiply
(DSP) support.

Table 3.8: Multiply implementation choices

MPYSHI produces the same bits for signed multiplication. Each multiply instruction is independent of
every other in execution, although the compiler is likely to use them as though they were dependent.

In an effort to maintain a fast clock speed, all three of these multiplies have been slowed down in
logic. Thus, depending upon the setting of the OPT MULTIPLY parameter, the multiply instructions
will either 1) cause an ILLEGAL instruction error (OPT MULTIPLY=0, or no multiply support), or
take OPT MULTIPLY additional clock cycles to complete.

Several multiplication implementations exist, as shown in Tbl. 3.8.

3.1.12 Divide Unit

The ZipCPU also has an optional divide unit which can be built alongside the ALU. This divide
unit provides the ZipCPU with another two instructions that cannot be executed in a single cycle:
DIVS, or signed divide, and DIVU, the unsigned divide. These are both 32–bit divide instructions,
dividing one 32–bit number by another. In this case, the Operand B field, whether it be register or
register plus immediate, constitutes the denominator, whereas the numerator is given by the other
register.

As with the multiply, the divide instructions are also multi–clock instructions. While the divide
is running, the ALU, any memory loads, and the floating point unit (if installed) will all be idle.
Once the divide completes, other units may be activated.

Should the divisor be zero, the divide will result in a division by zero exception. Upon exception,
the divide by zero bit will be set in the appropriate CC register. In the case of a user mode divide by

www.opencores.com Rev. 3.0 14

Gisselquist Technology, LLC Specification 2023/06/26

0123456789101112131415

COp 0 Imm.

1 DR 1 BR Imm

LDI 8’b Imm

MOV 1 BR Imm

Figure 3.3: ZipCPU Compressed Instruction Set (CIS) Format

COp Instruction

3’h0 SUB Subtract
3’h1 AND Bitwise And
3’h2 ADD Add two numbers
3’h3 CMP Compare
3’h4 LW Load 32-bit word
3’h5 SW Store 32-bit word
3’h6 LDI Load immediate
3’h7 MOV Move

Table 3.9: CIS OpCodes

zero, this will be cleared by any return to user mode command. The supervisor bit may be cleared
either by either a reboot or by a write from the external debugger.

3.1.13 Compressed Instructions

The ZipCPU also supports a compressed instruction set (CIS), as outlined in Fig. 3.3, when enabled
via OPT CIS. This compressed instruction set packs two instructions per word. Words must still
be aligned, and jumping into the middle of a compressed instruction is not (currently) allowed.
Interrupts, therefore, are disabled between the two instructions. Further, the CIS only permits the
encoding of 8 of the 32 opcodes available in the ISA. These eight compressed opcodes are listed in
Tbl. 3.9.

A final feature of the compressed instruction set has to do with load and store instructions.
All CIS load and store instructions use the form Rb+#Imm. The instruction encoding that would
otherwise be for an #Imm alone has been made into a shorthand for using the stack pointer as Rb

with an offset. Hence the compressed instruction set allows loads and stores to offsets of the Stack
Pointer of -128 octets on up to 127 octets. In practice, this gives the compressed load and store
instructions, when referencing the stack, thirty–two words that they can reference.

This compressed instruction set is somewhat similar to other architectures that have a thumb
instruction set, with the difference that the ZipCPU can intermix regular and compressed instruc-
tions at will. When using the CIS, instructions are still issued one at a time, however interrupts are
disabled between instruction halves in order to prevent the CPU from stopping and then needing to

www.opencores.com Rev. 3.0 15

Gisselquist Technology, LLC Specification 2023/06/26

012345678910111213141516171819202122232425262728293031

00 Reserved for debuggerBREAK
{

0 3’h7 111 01 IgnoredLOCK
{

10 Reserved for SimulatorSIM
{

11NOOP
{

Figure 3.4: NOOP/Break/LOCK Instruction Format

re-start mid-instruction. Further, it is the silent job of the assembler to generate CIS instructions
in an opportunistic fashion–unless this feature has been disabled on the command line.

The disassembler represents CIS instructions by placing a vertical bar between the two compo-
nents, while still leaving them on the same line.

Compressed instructions do not support conditional execution.

3.1.14 BREAK, Bus LOCK, SIM, and NOOP Instructions

Four instructions within the opcode list in Tbl. 3.3, have been reserved for special operations. These
are the BREAK, bus LOCK, SIM, and NOOP instructions. These are encoded according to Fig. 3.4.

The BREAK instruction is useful for creating a debug instruction that will halt the CPU without
executing. If in user mode, depending upon the setting of the break enable bit, it will either switch
to supervisor mode or halt the CPU–depending upon where the user wishes to do his debugging.
The lower 22 bits of this instruction are reserved for the debugger’s use.

The LOCK instruction forms the basis of the ZipCPU’s atomic operation support. The LOCK in-
struction is the first instruction of a four instruction sequence that executes with interrupts disabled.
This sequence is typically characterized by a LOCK instruction, followed by a load instruction, an
ALU operation, and then a store instruction. Using this four instruction sequence, the ZipCPU can
perfom atomic ALU operations such as adds, subtracts, bit-wise OR, bit-wise AND, and exclusive
OR operations. It can also be used to implement atomic exchanges, test and set instructions, or
compare and swap instructions. Since interrupts are disabled during LOCK instructions, the sequence
can also be used for a short series of instructions in user mode that need to execute with interrupts
disabled.

The SIM and NOOP instructions need a touch more explaining. These instructions have one
meaning when run in simulation, and a separate meaning when run in hardware. From the CPU’s
standpoint, the SIM instruction is designed to be an illegal instruction in hardware (i.e. when the
OPT SIM parameter is clear), and a NOOP instruction when executed in simulation. When executed
in hardware, the lower 22–bits of these instructions are ignored.

In simulation, however, those lower 22–bits often have a meaning specifying a simulation only
instructions.

Both SIM and NOOP instructions, though, contain 22–bits that can be used by a simulator if
present. The encoding of these 22-bits is identical, so that programs that run in a simulator may
run on actual hardware as well (using the NOOP encoding), or they may complain that they were
unintended to run on actual hardware, such as if the SIM encoding were used. Particular encodings

www.opencores.com Rev. 3.0 16

Gisselquist Technology, LLC Specification 2023/06/26

012345678910111213141516171819202122232425262728293031

0 1 1 1 1 1 1 1 S 12’h01 RsrvdxEXIT
{

0 1 1 1 1 1 1 1 S 12’h02 8’hffxDUMP
{

0 1 1 1 1 1 1 1 S 12’h002 0 RegxDUMP Rx
{

0 1 1 1 1 1 1 1 S 12’h02 1 uRegxDUMP uRx
{

0 1 1 1 1 1 1 1 S 12’h02 2 RegxOUT Rx
{

0 1 1 1 1 1 1 1 S 12’h02 3 uRegxOUT uRx
{

0 1 1 1 1 1 1 1 S 12’h004 ImmxOUT #Imm
{

Figure 3.5: NOOP/SIM Sub-Instruction Format

allow for exiting the simulation with a known exit code, xEXIT, dumping either one or all registers,
xDUMP, or simpling sending a character to the simulator’s standard output stream, xOUT–where x is
either N for the NOOP version of the instruction, or S for the SIM version of the opcode.

The various NOOP and SIM encodings are listed in Fig. 3.5.

3.1.15 Floating Point

Although the ZipCPU does not (yet) have a floating point unit, the current instruction set reserves
six opcodes for floating point operations. It also reserves a bit in the CC register for treating floating
point exceptions like divide by zero errors.

This should allow a 32–bit floating point accelerator to be included within the CPU, and to allow
some amount of native support for 32–bit floating point operations. 64–bit floating point instructions
will still either need to be emulated in software, or else they will need an external floating point
peripheral.

Until this FPU is built and integrated, or even afterwards if the floating point unit is not installed
by option, floating point instructions will trigger an illegal instruction exception, which may be
trapped and then implemented in software.

3.1.16 Derived Instructions

The ZipCPU supports many other common instructions by construction, although not all of them are
single cycle instructions. Tables 3.10, 3.11, 3.12 and 3.13 show how many of these other instructions
may be implemented on the ZipCPU. Many of these instructions will have assembly equivalents,
such as the branch instructions, to facilitate working with the CPU.

3.2 Interrupt Handling

The ZipCPU does not maintain any interrupt vector tables. If an interrupt takes place, the CPU
simply switches to from user to supervisor (interrupt) mode. Since getting to user mode in the first

www.opencores.com Rev. 3.0 17

Gisselquist Technology, LLC Specification 2023/06/26

Mapped Actual Notes
ABS Rx TST -1,Rx

NEG.LT Rx

Absolute value instruction. This depends upon
the derived NEG instruction below, and so this ex-
pands into three instructions total.

ADD Ra,Rx

ADDC Rb,Ry

Add Ra,Rx

ADD.C $1,Ry

Add Rb,Ry

Add with carry. This capability does not extend
easily past 64 bits.

BRA.x +/-$Addr ADD.x $Addr+PC,PC Branch or jump on condition x. Works for 18–bit
signed address offsets.

BZ $Addr Add.Z $Addr+PC,PC Branch on zero. Also known as branch on equals.

BNZ $Addr Add.NZ $Addr+PC,PC Branch on not-zero. Also known as branch on not-
equals.

BLT $Addr Add.LT $Addr+PC,PC Branch on less than.

BGE $Addr Add.GE $Addr+PC,PC Branch on greater than or equal to.

BC $Addr Add.C $Addr+PC,PC Branch on carry, also known as branch on less-
than unsigned.

BNC $Addr Add.NC $Addr+PC,PC Branch on not carry.

BV $Addr Add.V $Addr+PC,PC Branch on overflow.

BUSY ADD $-1,PC Execute an infinite loop.
CLR Rx LDI $0,Rx Clears Rx, leaving the flags untouched. This in-

struction can be compressed, but cannot be con-
ditional.

CLR.NZ Rx BREV.NZ $0,Rx Clears Rx, leaving the flags untouched. This in-
struction can be executed conditionally. The as-
sembler will quietly choose between LDI and BREV

depending upon the existence of the condition.
HALT Or $SLEEP,CC This only works when issued in inter-

rupt/supervisor mode. In user mode this is
simply a wait until interrupt instruction.

JMP R6+$Offset MOV $Offset(R6),PC Only works for 15–bit aligned offsets. Other offsets
may require adding the offset first to R6 before
jumping.

Table 3.10: Derived Instructions

www.opencores.com Rev. 3.0 18

Gisselquist Technology, LLC Specification 2023/06/26

Mapped Actual Notes
LJMP $Addr LW (PC),PC

Address

Although this only works for an unconditional
jump, and it only makes sense in an environment
with a unified instruction and data address space,
this instruction combination makes for a nice com-
bination that can be adjusted by a linker at a later
time.

LJMP.x $Addr LW.x 4(PC),PC

ADD 4,PC

Address

Implements a conditional long jump.

LJSR $Addr MOV $8+PC,R0

LW (PC),PC

Address

Long jump-to-subroutine. This is similar to the
LJMP instruction, save that it stores the return
address in R0.

JSR PC+$Offset MOV $4+PC,R0

ADD $Offset,PC

This is similar to the jump and link instructions
from other architectures, save only that it requires
a specific link instruction, seen here as the MOV

instruction on the left.
LDI $val,Rx BREV REV(val)&0x0ffff,Rx

LDILO (val&0x0ffff),Rx

Since there’s not enough instruction space to load
a complete immediate value into any register, fully
loading a register with a 32-bit value requires two
cycles. The LDILO (load immediate low) instruc-
tion has been created to facilitate this together
with BREV.
This is also the appropriate means for setting a
register value to an arbitrary 32–bit value in a
post–assembly link operation.

NEG Rx XOR $-1,Rx

ADD $1,Rx

Negates Rx

NEG.C Rx MOV.C $-1+Rx,Rx

XOR.C $-1,Rx

Conditionally negates Rx

NOT Rx XOR $-1,Rx One’s complement

Table 3.11: Derived Instructions, continued

www.opencores.com Rev. 3.0 19

Gisselquist Technology, LLC Specification 2023/06/26

POP Rx LW $(SP),Rx

ADD $4,SP

The compiler avoids the need for this instruction and
the similar PUSH instruction when setting up the stack
by coalescing all the stack address modifications into a
single instruction at the beginning of any stack frame.

PUSH Rx SUB $4,SP

SW Rx,$(SP)

Note that for pipelined operation, it helps to coalesce
all the SUB’s into one command, and place the SW’s
right after each other.

RET MOV R0,PC This depends upon the return address either remain-
ing in R0 from a prior JSR instruction, or otherwise it
needs to be restored prior to the return call.

SEXB Rx LSL 24,Rx

ASR 24,Rx

Signed extend an 8–bit value into a full word.

SEXH Rx LSL 16,Rx

ASR 16,Rx

Sign extend a 16–bit value into a full word.

STEP OR $Step|$GIE,CC Steps a user mode process by one instruction
SUBR Rx,Ry XOR -1,Ry

ADD 1+Rx,Ry

Ry is set to Rx-Ry, rather than the normal subtract
which sets Ry to Ry-Rx.

SUB Ra,Rx

SUBC Rb,Ry

SUB Ra,Rx

SUB.C $1,Ry

SUB Rb,Ry

Subtract with carry. Note that the overflow flag may
not be set correctly after this operation.

TRAP #X LDI $x,R1

AND ~$GIE,CC

This works because whenever a user lowers the $GIE
flag, it sets a TRAP bit within the uCC register.
Therefore, upon entering the supervisor state, the
CPU only need check this bit to know that it got
there via a TRAP. The trap could be made condi-
tional by making the LDI and the AND conditional.
In that case, the assembler would quietly turn the
LDI instruction into a BREV/LDILO pair, but the ef-
fect would be the same.

TS Rx,Ry,(Rz) LDI 1,Rx

LOCK

LB (Rz),Ry

TEST Ry

SB.Z Rx,(Rz)

A test and set instruction. The LOCK instruction in-
sures that the next three instructions lock the bus
between the instructions, so no one else can use it.
Thus guarantees that the operation is atomic.

Table 3.12: Derived Instructions, continued

www.opencores.com Rev. 3.0 20

Gisselquist Technology, LLC Specification 2023/06/26

TST Rx TST $-1,Rx Set the condition codes based upon Rx without
changing Rx. Equivalent to a CMP $0,Rx.

WAIT Or $GIE | $SLEEP,CC Wait until the next interrupt, then jump to super-
visor/interrupt mode.

Table 3.13: Derived Instructions, continued

place required a return to userspace instruction, RTU, once the interrupt takes place the supervisor
just simply starts executing code immediately after that RTU instruction.

Since the CPU may return from userspace after either an interrupt (hardware generated), a trap
(software generated), or an exception (a fault of some type), it is up to the supervisor code that
handles the transition to determine which of the three has taken place.

3.3 Memory Architecture

Having now described the CPU registers, instructions, and instruction formats, we now turn our
attention to how the CPU interacts with the rest of the world. Specifically, we shall discuss how the
bus is implemented, and the memory model assumed by the CPU.

3.3.1 Bus Standards

The ZipCPU (currently) has the ability to operate using one of three bus types: Wishbone (B4,
pipelined), AXI-Lite, or AXI (full).

When using Wishbone, several choices have been made to simplify this bus. First, all unnecessary
ancillary information has been removed. This includes the retry, tag, lock, cycle type indicator, and
burst indicator signals. Second, we insist that all accesses be pipelined. As a result, Wishbone
transactions complete whenever either the ERR line goes high or the last ACK has been received.

Further, the ZipCPU is big endian in how it uses the bus.
This becomes a problem when using either AXI-Lite and AXI (full) bus standards, since these

standards are specifically little endian. In general, this isn’t a problem for the instruction fetch
since all instructions are 32-bit words–the words are just ordered so that the MSB stays the MSB
regardless of byte order. Things become more difficult for data accesses. Even though the ZipCPU
data bus components can naturally handle the AXI bus in the required little-endian fashion, the
tool chain doesn’t yet fully support this. Where this difference becomes a problem is when accessing
peripherals. The AXI specification requires that any big-endian CPU re-order all of its bytes to
access a 32-bit peripheral. This would force the CPU to need to rearrange all of the bytes from big
to little endian byte order in any 32-bit peripheral access, and would therefore likewise require a
change to all 32-bit peripherals so that they would reorder their bytes back to their natural order.

To avoid needing to rearrange all bus accesses in software, the ZipCPU’s various AXI memory
components have been written with a SWAP WSTRB option. When using SWAP WSTRB, bytes within a
32-bit word are left in their natural order contrary to the AXI specification. 32-bit writes maintain
their MSB to LSB order, from left to write, as do 16-bit writes. This is contrary to the AXI
specification. However, it allows the ZipCPU to interact with 32-bit peripherals using the ZipCPU’s

www.opencores.com Rev. 3.0 21

Gisselquist Technology, LLC Specification 2023/06/26

natural byte-order. Sadly, this means that, when interacting with a memory type of peripheral–
specifically when interacting with DMAs of any type, then either all components must be adjusted
to use this (non-)standard, or the CPU must re–order bytes within 32-bit words in software.

3.3.2 Memory Model

The memory model of the ZipCPU is that of a uniform 32–bit address space. The CPU knows nothing
about which addresses reference on–chip or off-chip memory, or even which addresses reference
peripherals (outside of the data cache). There are two exceptions to this memory model. The
first exception is that the data cache needs to be able to know what addresses can be cached and
which ones cannot be cached. The bus compositor must therefore create an iscachable.v module
that the data cache can reference to know what addresses can be cached. This module examines
addresses, and returns a bit indicating if values at the given address can be cached. The second
exception applies to the ZipSystem CPU wrapper. When using this wrapper, memory addresses
where the most significant 8–bits of 32 are set are reserved for processor local peripherals. These
local peripherals will be discussed more in Sec. 7. Other bus wrappers will forward these addresses
directly to memory.

The prefetch cache currently has no means of detecting whether instruction memory gets changed
outside of the CPU. As a result, any DMA operation should be followed by a manual clearing the
instruction and data caches. This may be necessary when loading programs into previously used
memory, or when creating self–modifying code.

Should the memory management unit (MMU) be integrated into the ZipCPU, the MMU config-
uration will replace the iscachable module and tell the ZipCPU wich addresses may be cached and
which not.

This topic is discussed further in the linker section, Sec. 5.6.1 of the ABI chapter, Chap. 5.

3.4 Debug Interface

The ZipCPU supports an external debug port. This port has a minimum of 64 word address
locations. Using this interface, it is possible to both control the CPU, as well as read register values
and current status from the CPU.

While a more detailed discussion will be reserved for Sec. 6.1, here we’ll just discuss how it is
put together. The debug interface allows a controller access to the CPU reset signal, a halt control
signal, and a clear cache request signal. By raising the reset line, the CPU will be caused to clear
it’s cache, to clear any internal exception or error conditions, and then to start execution at the
RESET ADDRESS. This will cause the CPU to reboot, while only forcing changes to the CC and PC
registers. In a similar fashion, the debug interface allows you to control the cpu halt line into the
CPU. Holding this line high will hold the CPU in an externally halted state. Toggling the line low
for one clock allows one to step the CPU by one instruction. Lowering the line causes the CPU to
go. The final control wire, controlled by the debug interface, will force the CPU to clear its cache.
All of these control wires are set or cleared from the external debug control register. This control
register occupies the zero address of the ZipCPU’s debug register space, and aliases to the next 31
addresses.

www.opencores.com Rev. 3.0 22

Gisselquist Technology, LLC Specification 2023/06/26

The other 32-word addresses are allocated to the various ZipCPU registers, starting with the
supervisor registers. This means that a debugger can first halt the CPU and then examine or even
modify its full register set, before telling the CPU to continue.

One of the big differences between version 2 and version 3 of the ZipCPU are the address
allocations for these registers. In previous versions of the ZipCPU, reading CPU register state
required writing the register’s address to the control register before reading the register’s value
back. This proved to be problematic when trying to debug the ZipCPU over a slow link. By
creating a separate address for each register, burst read requests may be issued by the debugger for
the entire register state. This can greatly speed up interactions between the debugger and the CPU.

Finally, without halting the CPU, the debug controller can read from any single register, and it
can see if the CPU is still actively running, whether it is in user or supervisor modes, and whether
or not it is sleeping. This alone is useful for detecting deadlocks or other difficult problems.

www.opencores.com Rev. 3.0 23

Gisselquist Technology, LLC Specification 2023/06/26

4.

Operation

This chapter will explore how to perform common tasks with the ZipCPU, offering examples in both
C and assembly for those tasks.

4.1 CRT0

Of course, the one task that every CPU must do is start the CPU for other tasks. The ZipCPU is
no different. This is the one ZipCPU task that must take place in assembly, since no assumptions
can be made about the state of the ZipCPU upon entry. In particular, the stack pointer, SP, needs
to be loaded with a valid memory location before any higher level language can work. Once that
has taken place, it is then possible to call other higher level routines.

Table. 4.1 presents an example of one such initialization routine that first sets up the stack, then
calls a bootloader routine to potentially copy program memory from ROM to RAM and zero out
any global memory space. Upon completion, the initialization routine then calls main. Should main
ever return, this routine will call exit. Finally, once exit completes, a short routine following halts
the CPU.

4.2 System High

The easiest and simplest way to run the ZipCPU is just to leave it in its supervisor mode, herein
called “System High.” In this mode, the CPU runs your program in supervisor mode from reset to
power down, and is never interrupted. You will need to poll the interrupt controller to determine
when any external condition has become active. This mode is incredibly useful, and can handle
many microcontroller–type tasks.

Even better, in system high mode, all of the user registers are available to the system high
program as variables. Accessing these registers can be done in a single clock cycle, which would
move them to the active register set or move them back. While this may seem like a load or store
instruction, none of these register accesses will suffer from memory delays.

While supervisor mode tasks cannot be interrupted, they can wait for interrupts via the WAIT

instruction. This instruction can be accessed from C using the zip wait() built–in function. This
will place the ZipCPU into an idle/sleep mode to wait for interrupts. Because the supervisor puts
the CPU to sleep, rather than the user, no user context needs to be set up.

www.opencores.com Rev. 3.0 24

Gisselquist Technology, LLC Specification 2023/06/26

; By starting our loader in the .start section, we guarantee through our
; linker script that these are the very first instructions the CPU sees.

.section .start

.global start

; start is to be placed at our reboot/reset address, so it will be
; called upon any reboot.
start:

; The most important step: creating a stack pointer. The value
; top of stack is created by the linker based upon the linker script.
LDI top of stack,SP

; We then call the bootloader to load our code into memory.
MOV after bootloader(PC),R0

BRA bootloader

after bootloader:

; Clear the cache, so any DMA operations will be recognized.
OR 0xc000,CC

; Set argc to zero
CLR R1

; Point argv to NULL
MOV argv(PC),R2

; A pointer to the environment (often NULL)
LDI env,R3

; Finally, we call the main function.
JSR main

; Call the C-library exit function
; If main falls through, then the user hasn’t done so, so call it here.
; exit() should not return.
graceful kernel exit:

JSR exit

; The library exit() function should call hw shutdown() on completion.
; Any ongoing hardware operations should have ended before now

.global hw shutdown

hw shutdown:

NEXIT

; Finally, we halt the CPU
kernel is dead:

HALT

; Just in case . . .
BRA kernel is dead ; Provide a dummy value for an empty argv list

argv:

.WORD 0,0

Table 4.1: Setting up a stack frame and starting the CPU

www.opencores.com Rev. 3.0 25

Gisselquist Technology, LLC Specification 2023/06/26

#define EINT(A) (0x80008000|(A<<16)) // Enable interrupt A
#define DINT(A) (A<<16) // Just disable the interrupts in A
#define DISABLEALL 0x7fff0000 // Disable all interrupts
#define CLEARPIC 0x7fff7fff // Clears and disables all interrupts
#define SYSINT TMA 0x10 // The Timer–A interrupt mask

void timer delay(int nclocks) {
// Clear the PIC. We want to exit from here on timer counts alone
zip->pic = DISABLEALL|SYSINT TMA;

if (nclocks > 10) {
// Set our timer to count down the given number of counts
zip->z tma = nclocks;

zip->z pic = EINT(SYSINT TMA);

zip wait();

zip->z pic = CLEARPIC;

} // else anything less has likely already passed
}

Table 4.2: Waiting on a timer

4.3 A Programmable Delay

One common task in microcontrollers, whether in a user task or supervisor task, is to wait for a
programmable amount of time. Using the ZipSystem, there are several peripherals that can be used
to create such a delay. It can be done with any one of the three timers, the ZipJiffies peripheral, or
even an off-chip ZipCounter.

Here, in Tbl. 4.2, we present one means of waiting for a programmable amount of time using a
timer. If exact timing is important, you may wish to calibrate the method by subtracting from the
counts number the counts it takes to actually do the routine. Otherwise, the timer is guaranteed to
at least counts ticks.

Notice that the routine clears the PIC early on. While one might expect that this could be done
in the instruction immediately before zip rtu(), this isn’t the case. The reason is a race condition
created by the fact that the write to the PIC might complete after the zip rtu() instruction.
(Remember, the ZipCPU doesn’t wait for write completion before issuing its next instruction.) As
a result, you might find yourself with a zero delay simply because the timer had tripped some time
earlier. An alternative way of dealing with this is to read from the PIC after writing to it.

The routine is also careful not to clear any other interrupts beyond the timer interrupt, lest some
other condition trip that the user was also waiting on.

4.4 Traditional Interrupt Handling

Although the ZipCPU does not have a traditional interrupt vector architecture, with interrupt vector
addresses kept somewhere in memory, it is still possible to create the more traditional interrupt

www.opencores.com Rev. 3.0 26

Gisselquist Technology, LLC Specification 2023/06/26

while(true) {
zip rtu();

if (zip ucc() & CC TRAPBIT) { // Here, we allow users to install ISRs, or
// whatever else they may wish to do in supervisor mode.
...

} else (zip ucc() & (CC BUSERR|CC FPUERR|CC DIVERR)) {
// Here we handle any faults that the CPU may have encountered
// The easiest solution is often to print a trace and reboot
// the CPU.
start();

} else {
// At this point, we know an interrupt has taken place: Ask the programmable
// interrupt controller (PIC) which interrupts are enabled and which are active.
int picv = zip->pic;

// Turn off all active interrupts
int active = (picv >> 16) & picv & 0x07fff;

zip->pic = (active<<16);

// We build a mask of interrupts to re-enable in picv.
picv = 0;

for(int i=0,msk=1; i<15; i++, msk<<=1) {
if ((active & msk)&&(isr table[i])) {

// Here we call our interrupt service routine.
(isr table[i])();

}
}

}

Table 4.3: Traditional Interrupt handling

approach via software. In this mode, the programmable interrupt controller is used together with
the supervisor state to create the illusion of more traditional interrupt handling.

To set this up, upon reboot the supervisor task:

1. Creates a (single) user context, a user stack, and sets the user program counter to the entry
of the user task

2. Creates a task table of ISR entries

3. Enables the master interrupt enable via the interrupt controller, albeit without enabling any
of the fifteen potential underlying interrupts.

4. Switches to user mode, as the first part of the while loop in Tbl. 4.3.

We can work through the interrupt handling process by examining Tbl. 4.3. First, remember,
the CPU is always running either the user or the supervisor context. Once the supervisor switches

www.opencores.com Rev. 3.0 27

Gisselquist Technology, LLC Specification 2023/06/26

idle task:

; Wait for the next interrupt, then switch to supervisor task
WAIT

; When WAIT completes, the CPU will switch to supervisor mode.
; If the supervisor then re-enables this task, it will be because
; the supervisor wishes to wait for an interrupt again. For
; this reason, we loop back to the top.
BRA idle task

Table 4.4: Example Idle Task in Assembly

to user mode, control does not return until either an interrupt, a trap, or an exception has taken
place. Therefore, if neither the trap bit nor any of the exception bits have been set, then we know
an interrupt has taken place.

It is also possible that an interrupt will occur coincident with a trap or exception. If this is the
case, the subsequent zip rtu() instruction will return immediately, since the interrupt has yet to
be cleared.

As Sec. 7.1 discusses, the top of the PIC register stores which interrupts are enabled, and the
bottom stores which have tripped. (Interrupts may trip without being enabled, they just will not
generate an interrupt to the CPU.) Our first step is to query the register to find out our interrupt
state, and then to disable any interrupts that have tripped. To do that, we write a one to the enable
half of the register while also clearing bit fifteen–creating a disable interrupt command.

Using the bit mask of interrupts that have tripped, we walk through all fifteen possible interrupts.
If there is an ISR installed, we simply call it here.

There you have it: the ZipCPU, with its non-traditional interrupt architecture, can still process
interrupts in a very traditional fashion.

4.5 Idle Task

One task every operating system needs is the idle task, the task that takes place when nothing else
can run. On the ZipCPU, this task is quite simple, and it is shown in assembly in Tbl. 4.4, or
equivalently in C in Tbl. 4.5.

When this task runs, the CPU will fill up all of the pipeline stages up the ALU. The WAIT

instruction, upon leaving the ALU, places the CPU into a sleep state where nothing more moves.
Then, once an interrupt takes place, control passes to the supervisor task to handle the interrupt.
When control passes back to this task, it will be on the next instruction. Since that next instruction
sends us back to the top of the task, the idle task thus does nothing but wait for an interrupt.

This should be the lowest priority task, the task that runs when nothing else can. Running this
task will reduce power consumption, even stopping the clock if OPT CLKGATE is sset.

www.opencores.com Rev. 3.0 28

Gisselquist Technology, LLC Specification 2023/06/26

void idle task(void) {
while(true) { // Never exit
// Wait for the next interrupt, then switch to supervisor task
zip wait();

//
// When we come back, it’s because the supervisor wishes to
// wait for an interrupt again, so go back to the top.
}

}

Table 4.5: Example Idle Task in C

4.6 Context Switch

Fundamental to any multiprocessing system is the ability to switch from one task to the next. In
the ZipSystem, this is accomplished in one of a couple of ways. The first step is that an interrupt,
trap, or exception takes place. This will pull the CPU out of user mode and into supervisor mode.
At this point, the CPU needs to execute the following tasks:

1. Check for the reason, why did we return from user mode? Did the user execute a trap in-
struction, or did some other user exception such as a break, bus error, division by zero error,
or floating point exception occur. That is, if the user process needs attending then we may
not wish to adjust the context, check interrupts, or call the scheduler. Tbl. 4.6 shows the
rudiments of this code, while showing nothing of how the actual trap would be implemented.

You may also wish to note that the instruction before the first instruction in our context swap
must be a return to userspace instruction. Remember, the supervisor process is re–entered
where it left off. This is different from many other processors that enter interrupt mode at
some vector or other. In this case, we always enter supervisor mode right where we last left.

2. Capture user accounting counters. If the operating system is keeping track of system usage
via the accounting counters, the user counters need to be copied and accumulated into some
master user-task counter at this point.

3. Preserve the old context. This involves recording all of the user registers to some supervisor
memory structure, such as is shown in Tbl. 4.7. Since this task is so fundamental, the ZipCPU
compiler back end provides the zip save context(void *) function.

4. Reset the watchdog timer. If you are using the watchdog timer, it should be reset on a context
swap, to know that things are still working.

5. Interrupt handling. How you handle interrupts on the ZipCPU are up to you. You can activate
a sleeping task if you like, or for smaller faster interrupt routines, such as copying a character
to or from a serial port or providing a sample to an audio port, you might choose to do the task
within the kernel main loop. The difference may depend upon how you have your hardware
set up, how fast the kernel main loop is, and how tight your timing requirements are.

www.opencores.com Rev. 3.0 29

Gisselquist Technology, LLC Specification 2023/06/26

while(true) {
// The instruction before the context switch processing must
// be the RTU instruction that enacted user mode in the first
// place. We show it here just for reference.
zip rtu();

if (zip ucc() & (CC FAULT)) {
// The user program has experienced an unrecoverable fault and must die.
// Do something here to kill the task, recover any resources
// it was using, and report/record the problem.
. . .

} else if (zip ucc() & (CC TRAPBIT)) {
// Handle any user request
zip restore context(userregs);

// If the request ID is in uR1, that is now userregs[1]
switch(userregs[1]) {
case x: // Perform some user requested function

break;

}
}

}

Table 4.6: Checking for whether the user task needs our attention

www.opencores.com Rev. 3.0 30

Gisselquist Technology, LLC Specification 2023/06/26

save context:

SUB 4,SP ; Function prologue: create a stack
SW R5,(SP) ; frame and save R5. (R1-R4 are assumed
MOV uR0,R2 ; to be used and in need of saving. Then
MOV uR1,R3 ; copy the user registers, four at a time to
MOV uR2,R4 ; supervisor registers, where they can be
MOV uR3,R5 ; stored, while exploiting memory pipelining
SW R2,(R1) ; Exploit memory pipelining:
SW R3,4(R1) ; All instructions write to same base memory
SW R4,8(R1) ; All offsets increment by one
SW R5,12(R1)

. . . ; Need to repeat for all user registers
MOV uR12,R2 ; Finish copying ...
MOV uSP,R3

MOV uCC,R4

MOV uPC,R5

SW R2,48(R1) ; and saving the last registers.
SW R3,52(R1) ; Note that even the special user registers
SW R4,56(R1) ; are saved just like any others.
SW R5,60(R1)

LW (SP),R5 ; Restore our one saved register
ADD 4,SP ; our stack frame,
RETN ; and return

Table 4.7: Example Storing User Task Context

www.opencores.com Rev. 3.0 31

Gisselquist Technology, LLC Specification 2023/06/26

restore context:

SUB 4,SP ; Set up a stack frame
SW R5,(SP) ; and store a local register onto it.

LW (R1),R2 ; By doing four loads at a time, we are
LW 4(R1),R3 ; making sure we are using our pipelined
LW 8(R1),R4 ; memory capability.
LW 12(R1),R5

MOV R2,uR1 ; Once the registers are loaded, copy them
MOV R3,uR2 ; into the user registers that they need to
MOV R4,uR3 ; be placed within.
MOV R5,uR4

. . . ; Need to repeat for all user registers
LW 48(R1),R2 ; Now for our last four registers ...
LW 52(R5),R3

LW 56(R5),R4

LW 60(R5),R5

MOV R2,uR12 ; These are the special purpose ones, restored
MOV R3,uSP ; just like any others.
MOV R4,uCC

MOV R5,uPC

LW (SP),R5 ; Restore our saved register,
ADD 4,SP ; and the stack frame,
RETN ; and return to where we were called from.

Table 4.8: Example Restoring User Task Context

6. Calling the scheduler. This needs to be done to pick the next task to switch to. The next task
may be an interrupt handler, or it may be a normal user task. From a priority standpoint, it
would make sense that the interrupt handlers all have a higher priority than the user tasks,
and that once they have been called the user tasks may then be called again. If no task is
ready to run, run the idle task to wait for an interrupt.

This suggests a minimum of four task priorities:

(a) Interrupt handlers, executed with their interrupts disabled

(b) Device drivers, executed with interrupts re-enabled

(c) User tasks

(d) The idle task, executed when nothing else is able to execute

7. Restore the new tasks context. Given that the scheduler has returned a task that can be run at
this time, the user registers need to be read from the memory at the user context pointer and
then placed into the user registers. An example of this is shown in Tbl. 4.8, Because this is such
an important task, the ZipCPU GCC provides a built–in function, zip restore context(void

*), which can be used for this task.

www.opencores.com Rev. 3.0 32

Gisselquist Technology, LLC Specification 2023/06/26

8. Clear the userspace accounting registers. In order to keep track of per process system usage,
these registers need to be cleared before reactivating the userspace process. That way, upon
the next interrupt, we’ll know how many clocks the userspace program has encountered, and
how many instructions it was able to issue in those many clocks.

9. Return back to the top of our loop in order to execute zip rtu() again.

www.opencores.com Rev. 3.0 33

Gisselquist Technology, LLC Specification 2023/06/26

5.

Tool Suite and Application Binary Interface

This chapter discusses not the CPU itself, but rather how the GCC and binutils toolchains have
been configured to support the ZipCPU.

5.1 Executable File Format

ZipCPU executable files are stored in the Executable and Linkable Format (ELF). The ZipCPU
loader will use this file to load the executable into flash, or alternatively into whatever memory the
program will be executed from.

The ZipCPU described by this specification uses the 16-bits 16’hdad1 to identify itself against
other CPUs. This is not an officially registered number, and may change in the future.

The ZipCPU does not (yet) have a dynamic linker/loader. All linking is currently static, and
must be done prior to the Zip loader.

5.2 Stack

Register R13 (also known as the SP register) is the stack register. The compiler generates code that
grows the stack from high addresses to lower addresses. That means that the stack will usually
start out set to a very large value, such as one past the last RAM address, and it will grow to lower
and lower values–hopefully never mixing with the heap. Memory at the current stack position is
assumed to be allocated.

When creating a stack frame for a function, the compiler will subtract the size of the stack
frame from the stack register. It will then store any registers used by the function, from R5 to
R12 (including the link register R0) onto offsets given by the stack pointer plus a constant. If a
frame pointer is used, the compiler uses R12 (or FP) for this purpose. The frame pointer is set by
moving the stack pointer plus an offset into FP. This MOV instruction effectively limits the size of any
individual stack frame to 212 − 1 octets.

Once a subroutine is complete, the frame is unwound. If the frame pointer, FP was used, then FP

is copied directly to the stack pointer, SP. Registers are restored, starting with R0 all the way to R12

(FP). This also restores, and obliterates, the subroutine frame pointer. Once complete, a value is
added to the stack pointer to return it to its original value, and a jump is made to the value located
within R0.

www.opencores.com Rev. 3.0 34

Gisselquist Technology, LLC Specification 2023/06/26

5.3 Relocations

The ZipCPU binutils back end supports several types of relocations, although the two most common
are the 32–bit relocations for register load and long jump.

The first of these is for loading an arbitrary 32–bit value into a register. Such instructions are
broken into a pair of BREV and LDILO instructions, and once the value of the parameter is known
their immediate values can be filled in.

The second type of 32–bit relocation is for jumps to arbitrary addresses. These jumps are
supported by the LW (PC),PC instruction, followed by the 32–bit address to be filled in later by the
linker. If the jump is conditional, then a conditional LW.x 4(PC),PC instruction is used, followed
by a ADD 4,PC and then the 32–bit relocation value.

If a branch distance is known and within reach, then it will be implemented with an ADD #,PC

instruction, possibly conditional, as necessary.
While other relocations are supported, they tend not to be used nearly as much as these two.

5.4 Call format

One unique feature of the ZipCPU is that it has no native JSR instruction. The assembler attempts
to minimize this problem by replacing a JSR address instruction with a MOV #(PC),R0 followed by a
jump to the requested address. In this case, the offset to the PC for the MOV instruction is determined
by whether or not the jump can be accomplished with a local branch or a long jump.

While this works well in practice, this implementation prevents such things as JSR’s followed by
BRA’s from being combined together.

Finally, GCC will place first five operands passed to the subroutine into registers R1–R5, starting
with R1. Any additional operands are placed upon the stack.

5.5 Built-ins

The ZipCPU ABI supports the a number of built in functions. The compiler maps these functions
directly to assembly language equivalents, essentially providing the C programmer with access to
several assembly language instructions. These are:

1. zip bitrev(int) reverses the bits in the given integer, returning the result. This utilizes the
internal BREV instruction, and is designed to be used with FFT’s as necessary.

2. zip busy() executes an ADD -4,PC function, essentially forcing the CPU into a very tight
infinite loop.

3. zip cc() returns the value of the current CC register. This may be used within both user and
supervisor code to determine in which mode the CPU is within.

4. zip halt() executes an OR $SLEEP,CC instruction to place the processor to sleep. If the
processor is in supervisor mode, this halts the processor.

5. zip rtu() executes an OR $GIE,CC instruction. This will place the CPU into user mode, and
has no effect if the CPU is already in user mode.

www.opencores.com Rev. 3.0 35

Gisselquist Technology, LLC Specification 2023/06/26

6. zip syscall() executes a CLR CC instruction to return the CPU to supervisor mode. This
essentially executes a trap, setting the trap bit for the supervisor to examine.

What this instruction does not do is arrange for the trap arguments to be placed into the
registers R1 through R5. If necessary, a function call may be made to an assembly routine that
executes the trap if necessary to place the arguments in their proper places.

7. zip wait() executes an OR $SLEEP|$GIE,CC instruction. Unlike zip halt(), this zip wait()

instruction places the CPU into a wait state regardless of whether or not the CPU is in
supervisor mode or not. When this instruction completes, it will leave the CPU in supervisor
mode upon an interrupt having taken place.

8. zip restore context(context *) inserts the 32 assembly instructions necessary to copy all
sixteen user registers to a memory region pointed to by the given context pointer, starting
with uR0 on up to uPC.

9. zip save context(context *) inserts the 32 assembly instructions necessary to copy all six-
teen user registers to a memory region pointed to by the given context pointer argument,
starting with uR0 on up to uPC.

10. zip ucc(), returns the value of the user CC register.

5.6 Linker Scripts

The ZipCPU makes no assumptions about its memory layout. The result, though, is that the
memory layout of a given project is board specific. This is accomplished via a board specific linker
script. This section will discuss some of the specifics of a ZipCPU linker script.

Because the ZipCPU uses a modified binutils package as part of its tool chain, the format for
this linker script is defined by the GNU LD project within binutils. Further details on that format
may be found within the GNU LD documentation within the binutils package.

This discussion will focus on those parts of the script specific to the ZipCPU.

5.6.1 Memory Types

Of the FPGA boards that the ZipCPU has been applied to, most of them have some combination
of three types of memory: flash, block RAM, and (possibly DDR) Synchronous Dynamic RAM
(SDRAM). Of these three, only the flash is non–volatile. The block RAM is the fastest, and the
SDRAM the largest. While other memory types are available, such as files on an external media
such as an SD card or a network drive, these three types have so far been sufficient for our purposes.

To support these memories, the linker script has three memory lines identifying where each
memory exists on the bus, the size of the memory, and any protections associated with it. For
example,

blkram (wx) : ORIGIN = 0x0008000, LENGTH = 0x0008000

specifies that there is a region of memory, called blkram, that can be read and written, and that
programs can execute from. This section starts at address 0x8000 and extends for another 0x8000
bytes. The other memories are defined in a similar manner, with names flash and sdram.

Following the memory section, three specific symbols are defined:

www.opencores.com Rev. 3.0 36

Gisselquist Technology, LLC Specification 2023/06/26

• rom, defines the beginning of a ROM (i.e. flash) memory area. This is the area where software
is placed prior to startup. It may be set to NULL if the program is already loaded in RAM,
and doesn’t need to be copied to RAM prior to starting.

• kram. Some devices have a faster RAM (i.e. block RAM) than others. kram defines the
location of this RAM. If not used, then this value may be left at NULL.

• ram. This defines the beginning of regular RAM mmeory. If both rom and ram are defined,
then the CRT0 routine will copy any softare from rom to ram on startup.

These symbols are used to make the bootloader’s task easier.

5.6.2 The Entry Function

The ZipCPU has, as a parameter, a RESET ADDRESS. It is important that this address contain a valid
instruction (or more), since this is the first instruction the ZipCPU will execute. Traditionally, this
address is also the first address in instruction memory as well.

To make this happen, the ZipCPU defines two additional segments: the .start and the .boot

segments. The .start segment is to have nothing in it but the very initial startup code. This code
typically needs to run from flash (or other ROM). It should be placed at the RESET ADDRESS. This
is the purpose of the .start section–making sure the RESET ADDRESS has this function.

The .boot section has a similar purpose. This section includes anything associated with the
bootloader. It is a special section because, when loading from flash, the bootloader cannot be placed
in RAM, but must be placed in flash–since it is the code that loads things from flash into RAM.

It may also make sense to place any code executed once only within flash as well. Such code may
run slower than the main system code, but by leaving it in flash it can be kept from consuming any
(potentially precious) higher speed RAM. To do this, place this other code into the .boot section.

You may also find that large data structures that are best left in flash can also be placed into
this .boot section as well for that purpose.

5.6.3 Bootloader Tags

The bootloader needs to know a couple things from the linker script. It needs to know what
code/data to copy to block RAM from the flash, what code/data to copy to SDRAM, and finally
what initial data area needs to be zeroed. Four additional pointers, set within a linker script, can
define these regions.

1. kram start

This is the first location in flash containing data that the bootloader needs to move.

2. kram end

This is a pointer to one past the last location in block RAM to place things into. If this pointer
is equal to kram start, then no information is placed into kram.

3. ram image start

This should be equal to one past the last kram address, if kram is used, or alternatively
the first address in rom containing data to be copied to the RAM memory area. By adding

www.opencores.com Rev. 3.0 37

Gisselquist Technology, LLC Specification 2023/06/26

the difference between ram image start and kram to the flash address in kram start, the
actual source address within the flash of the code/data that needs to be copied into SDRAM
can be determined.

4. ram image end

This is the ending address of any code/data to be copied into ram. The distance between this
pointer and ram should be the total amount of data to be placed into the RAM memory area.

5. bss image end

The BSS segment contains data the starts with an initial value of zero. Such data are usually
not placed in the executable file, nor are they placed into any flash image. This address points
to the last location in ram used by the BSS segment. The bootloader is responsible then for
clearing the RAM between ram image end and bss image end.

The bootloader must also be robust enough to handle the cases where 1) there is no SDRAM,
2) there is no block RAM (kram is NULL), and 3) where there is non requirement to move
memory at all (rom is NULL)—such as when the program is placed into memory and started
from there.

5.6.4 Other required linker symbols

Two other symbols need to be defined in the linker script, which are used by the startup code. These
are:

1. top of stack

This is the address that the startup code will set the stack pointer to point to. It may be one
past the last location of a RAM memory, whether block RAM or SDRAM.

2. top of heap

This is the first location past the end of the .bss segment. Equivalently, this is the address
of the first unused piece of memory. It is used as the first location from whence to start any
dynamic memory subsystem.

All of these symbols need to reference word aligned addresses.

5.7 Loading ZipCPU Programs

There are two basic ways to load a ZipCPU program, depending upon whether or not the ZipCPU is
active within the current configuration. If the ZipCPU is not a part of the current FPGA configura-
tion, one need only write the flash and then switch configurations. It will be the CPU’s responsibility
to place itself in RAM then.

The more practical alternative is a little more involved, and there are several steps to it.

1. Halt the CPU by writing 0x09 to the CPU control register. This both halts and resets the
CPU. It then prevents both bus contention, while writing the new instructions to memory,
as well as preventing the CPU from running some instructions from one program and other
instructions from another.

www.opencores.com Rev. 3.0 38

Gisselquist Technology, LLC Specification 2023/06/26

2. Load the program into memory. For many programs this will involve loading the program into
flash, and necessitate having and using a flash controller. The ZipCPU also supports being
loaded straight into RAM address as well, as though the bootloader had completed it’s task.

3. You may optionally, at this point, clear all of the CPUs registers, to make certain the reboot
is clean.

4. Set the sPC register to the starting address.

5. Clear the instruction cache in order to force the CPU to reload its cache upon start.

6. Release the CPU by writing a zero to the CPU debug control register.

5.8 Starting a ZipCPU program

5.8.1 CRT0

Most computers have a section of code, conventionally called crt0, which loads a program into
memory. On the ZipCPU, this code starts at start. It is responsible for setting the stack pointer,
calling the boot loader, and then calling the main entry function, entry().

Because start must be the first symbol in a program, and because that first symbol is located
at the boot address for the CPU, the start is placed into the .start segment. It is the only routine
placed there.

On those CPU’s that don’t have enough logic space for a debugger, it may be useful to place a
routine to dump any registers, stack values and/or kernel traces to an output routine at this time.
That way, on any kernel fault, the kernel can be brought back up with a debug trace. This works
because rebooting the CPU doesn’t reset any register values save the sCC and sPC.

5.8.2 The Bootloader

As discussed in Sec. 5.6.3, the bootloader must be placed into flash if it is used. It can be a small
C program (it need not be assembly, like start), and it only needs to copy memory. First, it
copies any memory from flash to block RAM. Second, it copies any necessary memory from flash to
SDRAM. Then, it zeros any memory necessary in SDRAM (or block RAM, if there is no SDRAM).

These memory copies may be done with the DMA, or they may be done one–at–a time for a
performance penalty.

www.opencores.com Rev. 3.0 39

Gisselquist Technology, LLC Specification 2023/06/26

6.

Debug Register Addressing

This chapter covers the definitions and locations of the ZipCPU’s registers when accessed by the
debugging port. The ZipSystem is special, having access to an extra set of registers within the same
address space, so we’ll cover that separately.

This chapter also marks a significant upgrade from version 2.0 and prior of the CPU. In particular,
each CPU register has now been given its own address location in the debug address space. This
should make it easier to read all registers at once via a burst read command of some type.

6.1 Debug Port Registers

When the ZipCPU has been built with the OPT DBGPORT parameter set, then the CPU may be
accessed and controlled by an external debug port. This port contains at least 64 word addresses,
of which 33 are generally assigned. These registers are shown in Tbl. 6.1. The ZipSystem wrapper
contains an additional 64 words as well, which we’ll get to in a moment.

The foremost register among these is the ZipCPU Control and Status Register. This register has
the fields shown in Tbl. 6.2.

Here are some operations you can do with this register:

1. Reset: To reset the CPU, write an 0x08 to the debug control register. If the CPU was
configured to immediately start on reset, then the CPU will start immediately. If not, a
second write will be required to release the CPU.

2. Reset and halt: To reset the CPU but leave it halted, write a 0x09 to the debug control
register.

3. Start a halted CPU: If the CPU is halted, simply write a 0x00 to the debug control register
in order to cause it to continue.

4. Stepping the CPU: To step through a single instruction, write a 0x04 to the debug control
register. This will step one instruction through the CPU and then halt it again immediately
following that instruction.

The CPU will not step through compound instructions or LOCK instruction sequences, but
rather it will step over them as though they were only a single instruction. Hence, any com-
pound instruction will continue until both instructions have been executed (or one trapped).
Similarly, a LOCK instruction will step the full four instructions sequence before halting.

5. Halting the CPU. To halt the CPU, simply write a 0x01 to the debug control register. Once
the register reads back a 0x03, the CPU is halted.

www.opencores.com Rev. 3.0 40

Gisselquist Technology, LLC Specification 2023/06/26

Name Address Width Access Description

ZIPCTRL 0 32 R/W ZipCPU Control and Status Register
...

... (Reserved addresses)

sR0 128 32 R/W Supervisor Register R0
sR1 132 32 R/W Supervisor Register R1
...

... 32 R/W Other supervisor registers

sSP 180 32 R/W Supervisor Stack Pointer
sCC 184 32 R/W Supervisor Condition Code Register
sPC 188 32 R/W Supervisor Program Counter
uR0 192 32 R/W User Register R0
uR1 196 32 R/W User Register R1
...

... 32 R/W Other user registers

uSP 244 32 R/W User Stack Pointer
uCC 248 32 R/W User Condition Code Register
uPC 252 32 R/W User Program Counter

Table 6.1: ZipSystem Debug Registers

Debug port reads from these internal register addresses will return the current value from the
CPU’s internal register set. If the CPU is still running, the value returned may be out of date as
soon as it is returned. For this reason, it makes sense to halt the CPU first.

On the other hand, any attempt to write to an internal CPU register will require that the CPU
first be halted. This is accomplished in the wrapper processing the request. Such writes will also
leave the CPU in a halted state.

6.1.1 Breakpoint Handling

Breakpoints can be handled via the debug control register. Once a breakpoint has been hit, the
CPU will halt, raise its external interrupt flag, and set the break bit in the debug control register.

At this point, the debugger may examine and/or modify any registers as necessary.
Once complete, the breakpoint instruction may be replaced with another instruction, the cache

cleared, and that instruction may then be stepped through. The breakpoint may then be replaced
and the cache cleared again. The CPU may then be started to go until its next breakpoint.

6.2 ZipSystem Registers

The ZipSystem has an additional set of registers which may be accessed by the CPU. These are
associated with the additional peripherals the ZipSystem wrapper provides to the CPU. These
registers are listed in Tbl. 6.3. These registers addresses allow an external debugger to have access

www.opencores.com Rev. 3.0 41

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

11 RO The CPU has suffered from a break condition, and has halted
itself as a result.

10 RO True if an interrupt is pending.
9 RO GIE. If set, the CPU is currently in user mode.
8 RO Sleep. The CPU is sleeping.
7–6 (Reserved)
5 R/W Debug catch bit. If set to ‘1’, then the CPU will halt on any

external exception. Otherwise, the CPU will reboot on any ex-
ception.

4 WO Clear cache. Set to ‘1’ to clear both the CPU’s caches and its
pipelines. This is useful if you have just adjusted memory and
now need the CPU to be able to read that adjusted memory. As
a side effect, setting this bit will also halt the CPU if it wasn’t
halted before.

3 R/W Reset. Set to ‘1’ to reset the CPU. If the CPU has been config-
ured to start in a halted state, it will reset and then halt.

2 WO Step Command. Set to ‘1’ to step the CPU, and then leave it
halted. Self clearing.

1 RO Halt status. If true, the CPU has come to a complete halt.
0 R/W Halt request. Set to ‘1’ to halt the CPU.

Table 6.2: Debug Control Register Bits

www.opencores.com Rev. 3.0 42

Gisselquist Technology, LLC Specification 2023/06/26

Name Address Width Access Description

PIC 256 32 R/W Primary Interrupt Controller
WDT 260 32 R/W Watchdog Timer
WBUS 264 32 RO Address of the Last Bus Error
APIC 268 32 R/W Secondary Interrupt Controller
TMRA 272 32 R/W Timer A
TMRB 276 32 R/W Timer B
TMRC 280 32 R/W Timer C
JIFF 284 32 R/W Jiffies peripheral
MTASK 288 32 R/W Master task clock counter
MMSTL 292 32 R/W Master memory stall counter
MPSTL 296 32 R/W Master Pre-Fetch Stall counter
MICNT 300 32 R/W Master instruction counter
UTASK 304 32 R/W User task clock counter
UMSTL 308 32 R/W User memory stall counter
UPSTL 312 32 R/W User Pre-Fetch Stall counter
UICNT 316 32 R/W User instruction counter
DMACMD 320 32 R/W DMA command and status register
DMALEN 324 32 R/W DMA transfer length
DMASRC 328 32 R/W DMA read address
DMADST 332 32 R/W DMA write address

Table 6.3: Debug Register Addresses

www.opencores.com Rev. 3.0 43

Gisselquist Technology, LLC Specification 2023/06/26

to the ZipSystem peripherals as well as the CPU register set. These peripherals may be read or
written from the debug data port.

In this manner, the ZipSystem’s full internal state may be read and adjusted, in addition to the
CPU’s internal register state.

www.opencores.com Rev. 3.0 44

Gisselquist Technology, LLC Specification 2023/06/26

7.

ZipSystem Peripherals

The ZipSystem CPU wrapper contains a minimal CPU peripheral set which can be accessed in-
ternally. Here in this section, we’ll walk through the definition of each of these registers in turn,
together with any bit fields that may be associated with them, and how to set those fields.

The registers themselves can be found at the address shown in Fig. 7.1. These registers are all

Name Address Width Access Description

PIC 0xff000000 32 R/W Primary Interrupt Controller
WDT 0xff000004 32 R/W Watchdog Timer
WBU 0xff000008 32 RO Address of last bus error
APIC 0xff00000c 32 R/W Secondary Interrupt Controller
TMRA 0xff000010 32 R/W Timer A
TMRB 0xff000014 32 R/W Timer B
TMRC 0xff000018 32 R/W Timer C
JIFF 0xff00001c 32 R/W Jiffies
MTASK 0xff000020 32 R/W Master Task Clock Counter
MMSTL 0xff000024 32 R/W Master Stall Counter
MPSTL 0xff000028 32 R/W Master Pre–Fetch Stall Counter
MICNT 0xff00002c 32 R/W Master Instruction Counter
UTASK 0xff000030 32 R/W User Task Clock Counter
UMSTL 0xff000034 32 R/W User Stall Counter
UPSTL 0xff000038 32 R/W User Pre–Fetch Stall Counter
UICNT 0xff00003c 32 R/W User Instruction Counter
DMACTRL 0xff000040 32 R/W DMA Control Register
DMALEN 0xff000044 32 R/W DMA total transfer length
DMASRC 0xff000048 32 R/W DMA source address
DMADST 0xff00004c 32 R/W DMA destination address

Table 7.1: ZipSystem Internal/Peripheral Registers

32-bit registers. Writes of less than 32–bits may have unexpected results. Further, they are located
in a reserved location within the CPU’s address space. As a result, references to these locations by
either a ZipBones or an AXI based system may generate a bus error. When using the AXI bus,
a separate AXI-lite peripheral set is available to offer all but the DMA’s capability. However, the
AXI-lite peripheral set is not guaranteed to be in any particular address location.

www.opencores.com Rev. 3.0 45

Gisselquist Technology, LLC Specification 2023/06/26

Here in this section, we’ll walk through the definition of each of these registers/peripherals in
turn, together with any bit fields that may be associated with them, and how to set those fields.

7.1 Interrupt Controller(s)

Perhaps the most important peripheral within the ZipSystem is the interrupt controller. While
the ZipCPU itself can only handle one interrupt, and has only the one interrupt state: disabled or
enabled, the interrupt controller can make things more interesting.

The ZipSystem interrupt controller module supports up to 15 interrupts, all controlled from one
register. Further, it has been designed so that individual interrupts can be enabled or disabled indi-
vidually without having any knowledge of the rest of the controller setting. To enable an interrupt,
write to the register with bit 15 set and the respective interrupt enable bit set. No other bits will
be affected. To disable an interrupt, write to the register bit 15 clear and the respective interrupt
enable bit set. To clear an interrupt, write a ‘1’ to that interrupt’s status bit. The interrupt enable
pin for the global interrupt enable is set and cleared likewise.

As an example, suppose you wished to enable interrupt #4. You would then write to the register
a 0x80108010 to enable interrupt #4, interrupts in general, and to clear any past active state for
interrupt #4. When you later wish to disable this interrupt, you would write a 0x00100010 to the
register. This both disables the interrupt and clears the active indicator. This does not disable
interrupts in general, however. To do that you’d also need to set bit 31. Similarly a subsequent
write of 0x80000000 will disable all interrupts as well. (Why? Bit 31 selects the global interrupt
enable, and bit 15 is clear meaning that the interrupts will be disabled.)

The ZipSystem hosts two interrupt controllers: a primary and a secondary. The primary interrupt
controller is the one that interrupts the CPU. It has six local interrupt lines, the rest coming
from external interrupt sources. One of those interrupt lines to the primary controller comes from
the secondary interrupt controller. This controller maintains an interrupt state for the process
accounting counters, and any other external interrupts that didn’t fit into the primary interrupt
controller.

As a word of caution, because the interrupt controller is an external peripheral, and because
memory writes take place concurrently with any following instructions, any attempt to clear in-
terrupts on one instruction followed by an immediate Return to Userspace (RTU) instruction, may
not have the effect of having interrupts cleared before the RTU instruction executes. This is only
relevant if the two instructions take place in immediate succession. As an alternative, reading from
the interrupt controller after writing to it will place enough time between these two events for the
RTU command to successfully complete.

Looking into the bits that define this controller, you can see from Tbl. 7.2, that the ZipCPU
Interrupt controller has five different types of bits. The high order bit, or bit–31, is the master
interrupt enable bit. When this bit is set, then any time an interrupt occurs the CPU will be
interrupted and will switch to supervisor mode, etc.

The CPU also has a global interrupt enable bit defined internally as well. This bit is separate
from the master interrupt enable in the programmable interrupt controller. Both the PICs master
interrupt enable and the CPU’s global interrupt enable bit (turning on user mode) will both need
to be set for interrupts to be received and processed.

Bits 30 . . . 16 of the PIC are individual interrupt enable bits. Should the respective interrupt line
ever be high while its enable line is also high and while the master enable line is high, an interrupt

www.opencores.com Rev. 3.0 46

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31 R/W Master Interrupt Enable
30. . . 16 R/W Interrupt Enable lines
15 R Current Master Interrupt State
15 W Set to ‘1’ when writing to the device in order to enable any

interrupt lines whose respective bits are set in bits 16-31, ‘0’ to
clear them

15. . . 0 R/W Input Interrupt states, write ‘1’ to clear

Table 7.2: Interrupt Controller Register Bits

will be generated. Further, interrupts are level triggered. Hence, if the interrupt is cleared while the
line feeding the controller remains high, then the interrupt will re–trip. To set one of these interrupt
enable bits, one needs to write to the controller while both writing a ‘1’ to this bit and a ‘1’ to bit
15. To clear the bit later, one need only write a ‘1’ to this enable bit, while leaving bit 15 low.

Bits 14. . . 0 are the current state of the interrupt vector. Interrupt lines trip whenever they are
high, and remain tripped until the input is lowered and the interrupt is acknowledged. To lower an
interrupt line, simply write a one to the active interrupt bit to acknowledge it. Since interrupts are
level triggered, this will only clear the line if the incoming interrupt has also been cleared. For this
reason, it makes sense to clear the interrupt first in the peripheral generating it, and then in the
interrupt controller.

As an example, consider the following scenario where the ZipCPU supports four interrupts, 3. . . 0.

1. The Supervisor will first, while in the interrupts disabled mode, write a 32’h800f800f to
the controller. This will enable the master interrupt line, as well as interrupts 0-3 while also
clearing any past status from interrupts 0-3. The supervisor may then switch to the user mode
to fully enable interrupts.

2. When an interrupt occurs, the CPU will switch to the supervisor mode. It may then cycle
through the interrupt bits to learn which interrupt handler to call.

3. If the interrupt handler expects more interrupts, it will clear its current interrupt line when
it is done handling the interrupt in question. To do this, it will write a ‘1’ to the low order
interrupt mask, such as writing a 32’h0000 0001.

4. If the interrupt handler does not expect any more interrupts, it will instead clear the interrupt
from the controller by writing a 32’h0001 0001 to the controller.

5. The supervisor should also check for any user exceptions here, but this action has nothing to
do with the interrupt control register itself.

6. The CPU may then leave supervisor mode, possibly adjusting whichever task is running, by
executing a return to userspace instruction.

www.opencores.com Rev. 3.0 47

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31 R/W Auto-Reload
30. . . 0 R/W Current timer value

Table 7.3: Timer Register Bits

7.1.1 Timer Register

The ZipSystem contains three separate timer registers. Each has an identical functionality, and a
single control and status register whose bit definitions are given in Tbl. 7.3. This is a very simple
timer. It just counts down to zero and then trips an interrupt. Writing to the current timer value
sets the value to count down from, and reading from it returns that value. Writing to the current
timer value while also setting the auto–reload bit will send the timer into an auto–reload mode. In
this mode, upon setting its interrupt bit for one cycle, the timer will also reset itself back to the
value of the timer that was written to it when the auto–reload option was written to it. To clear
and stop the timer, just simply write a ‘32’h00’ to this register.

This timer may be used for non–interrupt purposes as well. For example, one might write
0x7fff ffff to the timer before beginning some operation. Once the operation is complete, the
difference between the starting counter’s value and its value on completion would then tell you how
many clock cycles were used for that operation.

7.1.2 ZipJiffies

The ZipJiffies peripheral is motivated by the Linux use of ‘jiffies’ whereby a process can request to
be put to sleep until a certain number of ‘jiffies’ have elapsed. Using this interface, the CPU can read
the number of ‘jiffies’ from the peripheral (it only has the one location in address space), add the
sleep length to it, and write the result back to the peripheral. The zipjiffies peripheral will record
the value written to it only if it is nearer the current counter value than the last current waiting
interrupt time. If no other interrupts are waiting, and this time is in the future, the peripheral will
be enabled. The processor may then place this sleep request into a list of other sleep requests. Once
the timer expires, it would write the next Jiffy request to the peripheral and wake up the process
whose timer had expired.

Indeed, the Jiffies register is nothing more than a glorified counter with an interrupt. Unlike the
other counters, the internal Jiffies counter can only be read, never set. Writes to the jiffies register
create an interrupt time. When the Jiffies register later equals the value written to it, an interrupt
will be asserted and the register then continues counting as though no interrupt had taken place.

Finally, if the new value written to the Jiffies register is within the past 231−1 clock ticks, the
Jiffies register will immediately cause an interrupt and otherwise ignore the new request.

The purpose of this register is to support absolute alarm intervals within a CPU, and moreover
to support them within an operating system.

To set an alarm for a particular process N clocks in advance, read the current Jiffies value, add
N , and write it back to the Jiffies register. The O/S must also keep track of values written to the
Jiffies register. Thus, when an ‘alarm’ trips, it should be removed from the list of alarms, the list
should be resorted, and the next alarm in terms of Jiffies should be written to the register–possibly
for a second time.

www.opencores.com Rev. 3.0 48

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31. . . 0 R Current jiffy value
31. . . 0 W Value/time of next interrupt

Table 7.4: Jiffies Register Bits

Similarly, if you wish to set an alarm on an interval, read the current value from the Jiffies register,
and add your interval. Keep track of the initial value. Later, when the process is interrupted, you
can add your interval to the previous alarm time to achieve an absolute alarm interval.

In many ways, the ZipJiffies register is simply a counter. It just counts up one on every clock.
Reads from this register, as shown in Tbl. 7.4, always return the time value contained in the register.

The register accepts writes as well. Writes to the register set the time of the next Jiffy interrupt.
If the next interrupt is between 0 and 231 clocks in the past, the peripheral will immediately create an
interrupt. Otherwise, the register will compare the new value against the currently stored interrupt
value. The value nearest in time to the current jiffies value will be kept, and so the jiffies register
will trip at that value. Prior values are forgotten.

When the Jiffy counter value equals the value in its trigger register, then the jiffies peripheral will
trigger an interrupt. At this point, the internal register is cleared. It will create no more interrupts
unless a new value is written to it.

7.1.3 Watchdog Timer

The watchdog timer has only two differences from the of the other timers. The first difference is
that it is a one–shot timer. There is no watchdog interval mode. Writes to the watchdog timer will
therefore count down to zero and stop. The second difference, though, is critical: the interrupt line
from the watchdog timer is tied to the reset line of the CPU. Hence writing a ‘1’ to the watchdog
timer will always reset the CPU. To stop the Watchdog timer, write a ‘0’ to it. To start it, write
any other number to it—as with the other timers.

The general usage of the watchdog timer is to write some amount of time to it, equal to the
maximum amount of time through the CPU’s core processing loop. If every time through the loop
the same maximum amount of time is written, all will be well. If something goes wrong, however,
and locks up the system, the watchdog timer will detect that it doesn’t get restarted on time. The
CPU will then be reset. Any additional fault diagnosis, however, will need to be handled at reset.
(The watchdog provides no notification that it has tripped.)

7.1.4 Bus Watchdog

There is an additional watchdog timer on the Wishbone bus of the ZipSystem. This timer, however,
is hardware configured and not software configured. The timer is reset at the beginning of any bus
transaction, and only counts clocks during such bus transactions. If the bus transaction takes longer
than the number of counts the timer allots, it will raise a bus error flag to terminate the transaction.
This is useful in the case of any peripherals that are misbehaving. If the bus watchdog terminates
a bus transaction, the CPU may then read from the bus watchdog’s port to find out which memory
location created the problem.

www.opencores.com Rev. 3.0 49

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31. . . 0 R/W Current counter value

Table 7.5: Counter Register Bits

7.2 Performance Counters

The ZipCPU also supports several counter peripherals. These are very simply: they just count. The
current count value is implemented as a single 32–bit register, always incrementing. The ZipCounter
cannot be halted. When it rolls over, it issues an interrupt. Writing a value to the counter just sets
the current value, and it starts counting again from that value.

It’s that simple.
These counters each contain a single register, as shown in Tbl. 7.5. Writes to this register set

the new counter value. Reads return the current counter value. Further, each counter will trigger
an interrupt on overflow, to allow the CPU to keep track of as many counts as are necessary.

These counters can be configured to count upwards upon any event. Using this capability,
eight counters have been assigned the task of performance counting. Two sets of four registers are
available for keeping track of performance. The first set tracks all CPU performance, including both
supervisor as well as user CPU statistics. The second set tracks user mode statistics only, and will
not count in supervisor mode.

The four counters in each set are configured as follows:

1. The first counter counts clock ticks.

2. The second counter counts the number of clock cycles where the CPU is enabled, but no
instruction is ready.

3. The third counter counts CPU stalls following the read operands stage. A stall in this case
indicates that an instruction is ready to execute, but the necessary execution unit is somehow
busy.

4. The fourth and final counter keeps track of instructions issued.

It is envisioned that these counters will be used for process accounting as follows: First, every
time a master counter rolls over, the supervisor (Operating System) will record the fact. Second,
whenever activating a user task, the Operating System will set the four user counters to zero. When
the user task has completed, the Operating System will read the timers back off, to determine how
much of the CPU the process had consumed. To keep this accurate, the user counters will only
increment when the GIE bit is set to indicate that the processor is in user mode.

In practice, these timers have also worked nicely to keep track of runtime performance during
time sensitive operations–such as when running benchmarks.

www.opencores.com Rev. 3.0 50

Gisselquist Technology, LLC Specification 2023/06/26

Bit # Access Description

31 R DMA Active. Write a zero to this bit to begin a transaction.
30 R Bus error, transaction aborted. This bit is set if a bus error is en-

countered at any time during the transaction. It may be cleared
by writing a one to it. New transactions cannot commence with-
out clearing any prior error condition.

29 R/W Interrupt triggered. If the transfer is interrupt triggered, then
the transfer will not start until the interrupt line is high. Keep
this bit clear to start the transfer immediately.

28–24 R/W Interrupt number. Determines which interrupt will trigger the
transfer, should the transfer be interrupt triggered.

22 R/W Set to ‘1’ to prevent the controller from incrementing the desti-
nation address, ‘0’ for normal memory copy.

21–20 R/W Control the word size of the destination device.
18 R/W Set to ‘1’ to prevent the controller from incrementing the source

address, ‘0’ for normal memory copy.
17–16 R/W Control the word size of the source device.
11. . . 0 R/W Intermediate transfer length. Thus, to transfer one byte per in-

terrupt, set this value to 1. To transfer the maximum size, set it
to 0.

Table 7.6: DMA Control Register Bits

7.2.1 ZipDMA Controller

As of Version 3 of the ZipCPU, the ZipSystem now has a new DMA controller called the ZipDMA.
This is a Wishbone DMA controller designed to handle unaligned transfers in a bus-width indepen-
dent fashion.1 This DMA controller may also be used as an independent peripheral if desired.

This ZipDMA controller has four registers. Of these four, the transfer length, source and desti-
nation address registers should need no further explanation. They are full 32–bit registers specifying
the entire transfer length, the starting address to read from, and the starting address to write to.
These registers can be written to any time the DMA is idle, and they can also be read at any time.
The control register, however, will need some more explanation.

The bit allocation of the control register is shown in Tbl. 7.6. This control register has been
designed so that the common case of memory access need only set the key and the transfer length.
Hence, writing a 32’h0000 to the control register will start any memory transfer. On the other hand,
if you wished to read a single byte from a serial port (constant address), connected to interrupt
zero, and then to place that result into a buffer every time a byte was available, you might wish
to write 32’h20070001. (Note that the DMA controller does not use the interrupt controller, and
so all interrupts must be self clearing when using the DMA.) As a third example, if you wished to
write to 16-bytes to a serial port transmit FIFO anytime it was less than half full, and this half full
interrupt line was number 3, then you might wish to issue a 32’h20700010 to this port.

1A separate AXI controller is scheduled for development.

www.opencores.com Rev. 3.0 51

Gisselquist Technology, LLC Specification 2023/06/26

2’b00 Full bus width, highest speed DMA transfer.
2’b01 Transfer 32-bits at a time.
2’b10 Transfer 16-bits per beat.
2’b11 Transfer 8-bits per beat.

Table 7.7: ZipDMA Word Size Enumeration

Both source and destination can be configured to support word sizes less than a full bus word in
length, as enumerated in Tbl. 7.7. When using word sizes other than the full bus width, then both
source and destination addresses, together with the transfer length, will need to be aligned to the
word size used. No particular alignment is required, however, when using either 8-bit transfers or
the full bus width.

In most cases, the transfer length can be understood as the number of bytes that will be read
and written per interrupt. The exception to this is when not using interrupt based transfers. In
this case, and because Wishbone can only go in one direction at a time, a state machine within the
ZipDMA will break the transfer size up into packets, each a transfer length in size. The packet will
first be read into an internal buffer, and then written out. This process will repeat until the entire
transfer has completed.

www.opencores.com Rev. 3.0 52

Gisselquist Technology, LLC Specification 2023/06/26

8.

Integration

8.1 ZipCPU Parameters

One problem with a simple goal such as being light on logic, is that some architectures have some
needs, others have other needs. What constitutes minimum area in some architectures might con-
sume all the available logic in others. As an example, the CMod S6 board built by Digilent uses a
very spare Xilinx Spartan 6 LX4 FPGA. This FPGA doesn’t have enough look up tables (LUTs) to
support pipelined mode, whereas another project running on a XuLA2 LX25 board made by Xess,
having a Spartan 6 LX25 on board, has more than enough logic to support a pipelined mode. Even
better, the Artix–7 35T has not only enough logic for a pipelined mode, but plenty of RAM to
support instruction and data caches as well. Very quickly it becomes clear that LUTs and RAMs
can be traded for performance.

To make tailored configurations possible, the ZipCPU has a set of parameters that can be used
to configure its logic usage and performance. This section, therefore, will go through each of the
ZipCPU’s configuration parameters and explain its meaning.

The first several parameters control the ZipCPU’s design as a whole, such as whether or not the
CPU is pipelined, how the register file is implemented, or how big the caches are.

• OPT PIPELINED: The first performance question is whether or not the ZipCPU will operate on
multiple instructions at a time in a pipelined fashion. Since the ZipCPU is fundamentally a
pipelined architecture, setting this value to zero will primarily simplify the pipeline stall logic
and remove any duplicated registers throughout the pipeline so that only one instruction is
ever allowed into the pipeline at a time. While this can be used to lower logic, it doesn’t
fundamentally affect the pace of a single instruction’s execution.

• OPT EARLY BRANCHING: When enabled, the ZipCPU may branch on an unconditional branch
instruction as soon as it is recognized by the instruction decoder. This minimizes the pipeline
stalls associated with branching, for a small additional logic cost.

• OPT DISTRIBUTED REGS: The ZipCPU normally keeps its registers in distributed RAM, where
it can read them on the same clock cycle their address becomes available. This doesn’t work,
however, on an iCE40 FPGA since iCE40 FPGAs don’t have distributed RAM. Instead, iCE40
FPGAs require a clock to read from RAM, and they also require that any read of the RAM go
immediately and unconditionally into a registered output. This parameter exists to support
the iCE40 and similar architectures. Set this parameter to zero to implement the register file
in such a way that all register file reads are registered on a clock edge.

www.opencores.com Rev. 3.0 53

Gisselquist Technology, LLC Specification 2023/06/26

• OPT LGICACHE: This specifies the log, based two, of the instruction cache size. A value of one
or less will result in no instruction cache. A value of two (for Wishbone) or four or less (for
AXI4 and AXI4–lite) will result in a small pipelined memory reader–with no cache. Anything
larger will specify the size of the instruction cache size.

• OPT LGDCACHE: Specifies the log, based two, of the data cache size. As with the instruction
cache, a value of zero will yield a basic memory controller with no cache. If OPT PIPELINED is
true, a pipelined memory controller may be used that allows multiple requests to be outstanding
at once. For anything larger than two, this value specifies the log of the data cache size.

• OPT LOWPOWER: The ZipCPU has been designed as a low logic processor. Low logic, however,
doesn’t necessarily low power. If the OPT LOWPOWER parameter is set, the ZipCPU will attempt
to either minimize unused state transitions or else pin their values to zero.

The next several parameters control the instruction set, and whether or not all instructions are
implemented or not.

• OPT MPY: Controls the algorithm that will be used to implement a multiply. If left at zero, any
multiply instruction will result in an illegal instruction error. Values of 1–4 will generate a
multiply algorithm requiring that many cycles. Of those, 1–2 are not well protected from the
critical path and may not be usable. OPT MPY = 3 is the workhorse for most Xilinx series 7
parts. It involves registering the multiply inputs on the first clock, performing the multiply
itself on the second, and the registering and returning those results on a third clock cycle.
OPT MPY = 4 is similar to OPT MPY = 3, save that a binomial multiply formula is used, requiring
an extra clock cycle. This seems to work well on Spartan 6 FPGAs.

If an FPGA doesn’t have DSPs, and therefore no native hardware accelerated multiply support,
then any value greater than four will generate a low logic shift–add algorithm that should work
on any architecture at the cost of about 33 clock cycles per multiply.

• OPT DIV: If set, the ZipCPU will include a divide unit to support divide instructions. If not,
any attempt to issue a divide instruction will result in an illegal instruction error.

• OPT SHIFTS: If set, the ZipCPU will support shift instructions: LSR (logical shift right), ASR
(arithmetic shift right), and LSL (logical shift left) for any number of shifts. If clear, these
instructions will only ever shift by one bit.

Unlike divide or multiply instructions, if OPT SHIFTS is clear the CPU will not generate an
illegal instruction error. Instead, it will quietly execute the wrong instruction. As a result,
there’s no current way to trap an unimplemented shift and replace it with software. Worse,
GCC support currently requires that this value be set, so turning this option off is quite
problematic.

Shift register support costs a couple hundred LUTs, and hence the reason for this option. A
very low logic implementation might wish to keep this parameter clear.

Note that the ZipCPU GCC compiler port does not support this option.

• OPT CIS: Controls whether or not the instruction decoder includes the logic necessary to handle
the compressed instruction set.

www.opencores.com Rev. 3.0 54

Gisselquist Technology, LLC Specification 2023/06/26

• OPT LOCK: Atomic access on the ZipCPU requires the use of a LOCK instruction. If this value
is set, the LOCK instruction will be supported. If clear, LOCK instructions will generate
illegal instruction errors.

LOCK instructions should only be necessary in multitasking or interrupt environments.

• OPT SIM: The ZipCPU supports several simulation–only instructions. If this value is set, these
instructions will be decoded and processed through the pipeline. If clear, any simulation only
instruction will be converted into either a NOOP or an illegal instruction–depending upon the
instruction opcode in question.

The final set of parameters control the ZipCPU’s wrappers, and hence its environment.

• OPT START HALTED: The ZipCPU can be configured to immediately start processing instruc-
tions on power up, or it can be configured to wait for a command on the debug port before
starting. If OPT START HALTED is set, then the ZipCPU will stay in its halted state upon reset
and so wait for a command before starting.

This START HALTED option is useful for debugging, since it prevents the CPU from doing
anything without supervision. Of course, once all pieces of your design are in place and proven,
you’ll probably want to set this to zero, so that the CPU will then start up immediately upon
power up.

• RESET DURATION: Some architectures, such as the iCE40s, require that the CPU stay halted
for a particular period of time before first attempting to access memory or other peripherals.
This behavior can be controlled by the RESET DURATION parameter, controlling how long the
CPU remains in reset before leaving its initial halted state. Set this value to zero to start
immediately following a reset.

• OPT TRACE PORT: The ZipCPU has a trace port that can be useful for debugging the CPU in
hardware if necessary. The trace port is a 32-bit output containing internal details of the CPU
on a clock by clock basis. For example, it is possible to watch what is happening within the
pipeline, what registers are getting set to what values and more by observing the trace port.
This port, however, costs area, so it is not enabled by default. When not enabled, the debug
trace port output will be clamped at zero.

• OPT CLKGATE: All of the ZipCPU’s wrappers now include a clock gating option controlled by
this parameter. If set to one, clock gating will be enabled and the ZipCPU will halt its clock
any time it is halted or asleep.

This option is designed for optimizing simulations only, and has not yet been tested on any
FPGAs.

• OPT DMA: The ZipSystem wrapper optionally contains a Wishbone DMA. When this option is
set, this ZipDMA will be included. If clear, the ZipSystem will be built without an internal
DMA.

• OPT ACCOUNTING: The ZipSystem wrapper also includes a set of eight counters which can be
used for process accounting. This parameter controls whether or not these accounting timers
are inclued into the ZipSystem wrapper or not.

www.opencores.com Rev. 3.0 55

Gisselquist Technology, LLC Specification 2023/06/26

When using either the AXI–Lite or AXI wrappers, these accounting registers have been moved
into an external AXI peripheral package.

• EXTERNAL INTERRUPTS: Controls the number of interrupt wires coming into the ZipSystem
CPU wrapper. This number must be between one and sixteen, or if the performance counters
are disabled, between one and twenty four.

All other wrappers only allow a single incoming interrupt wire.

• RESET ADDRESS: The RESET ADDRESS parameter controls what address the CPU will attempt
to fetch its first instruction from upon any CPU reset. The default value is not likely to be
particularly useful, so overriding the default is recommended for every implementation.

• ADDRESS WIDTH: The ADDRESS WIDTH parameter configures the size of the ZipCPU’s address
space in bytes (not words). This parameter can be used to trim down the width of the address
registers used by the CPU. For example, although the ZipCPU will support a 32-bit addressing,
particular implementations may only implement a smaller subset of these bits. By setting this
value to the actual size of the external address space, some logic may be spared within the
CPU. The default is also the maximum, a 32–bit address width.

• BUS WIDTH: Specifies the bit width of the bus. The minimum bus width is 32-bits, although
both instruction and data bus protocol handlers should be able to accommodate larger bus
widths as necessary.

8.2 Clocks

The ZipCPU has now been tested and proven on the Xilinx Spartan 6 FPGA, as well as the Artix–7
FPGA.

Name Source Rates (MHz) Description
Max Min

i clk External 100 MHz System clock, Artix–7/35T
80 MHz System clock, Spartan 6

Table 8.1: List of Clocks

On a SPARTAN 6, the clock can run successfully at 80 MHz.
When running on Digilent’s Arty board, the clock is limited to 81.25 MHz by the memory

interface generated (MIG) core used to access SDRAM.
Others have described running the ZipCPU successfully at 140 MHz on a Kintex–7.

8.3 I/O Ports

This chapter presents and outlines the various I/O lines in and out of the ZipSystem. Since the
ZipCPU can only ever be a component of a larger system, connecting these I/O lines is an important
part of integration.

www.opencores.com Rev. 3.0 56

Gisselquist Technology, LLC Specification 2023/06/26

Port Width Direction Description

o wb cyc 1 Output Indicates an active Wishbone cycle
o wb stb 1 Output WB Strobe signal
o wb we 1 Output Write enable
o wb addr 30 Output Bus address
o wb data 32 Output Data on WB write
o wb sel 4 Output Select lines
i wb stall 1 Input WB bus slave not ready
i wb ack 1 Input Slave has completed a R/W cycle
i wb data 32 Input Incoming bus data
i wb err 1 Input Bus Error indication

Table 8.2: CPU Master Wishbone I/O Ports

Port Width Direction Description

i dbg cyc 1 Input Indicates an active Wishbone cycle
i dbg stb 1 Input WB Strobe signal
i dbg we 1 Input Write enable
i dbg addr 7 Input Debug port register address
i dbg data 32 Input Data on WB write
o dbg stall 1 Output WB bus slave not ready
o dbg ack 1 Output Slave has completed a R/W cycle
o dbg data 32 Output Incoming bus data

Table 8.3: CPU Debug Wishbone I/O Ports

The I/O ports to the ZipSystem may be grouped into three categories. The first is that of
the master wishbone used by the CPU, then the slave wishbone used to command the CPU via a
debugger, and then the rest. The first two of these were already discussed in the wishbone chapter.
They are listed here for completeness in Tbl. 8.2 and 8.3 respectively.

There are four other basic lines to the CPU: the external clock, external reset, incoming external
interrupt line(s), and the outgoing debug interrupt line. These are shown in Tbl. 8.4. The clock line
was discussed briefly in Sec. 8.2. The reset line is a synchronous, active high, system reset line. It
should be asserted on power up. Once released, assuming START HALTED is clear, the CPU will start
running from its RESET ADDRESS in memory. The i ext int input contains a set of external interrupt
lines to the ZipSystem. This line may actually be as wide as 16 external interrupts, depending upon
the setting of the EXTERNAL INTERRUPTS parameter. Finally, the ZipSystem produces one external
interrupt. This will be set whenever the entire CPU comes to a halt to wait for the debugger.

Other I/O lines exist to support particular option. For example, the trace port contains a 32-bit
output. These 32 bits will have one of the encodings shown in Fig. 8.1. These may be understood
as follows: if a register is being written, then the register’s address and lower 26–bits of its value are
provided. Otherwise, on any jump, the lower 28–bits of the new program counter are provided. In

www.opencores.com Rev. 3.0 57

Gisselquist Technology, LLC Specification 2023/06/26

Port Width Direction Description

i clk 1 Input The master CPU clock
i reset 1 Input Active high reset line
i ext int 1. . . 16 Input Incoming external interrupts, actual value set by imple-

mentation parameter. This is only ever one for the Zip-
Bones implementation.

o ext int 1 Output CPU Halted interrupt

Table 8.4: I/O Ports

012345678910111213141516171819202122232425262728293031

T 101 CE Hlt Bk Sl IE BE Tp Il CC PF PI DC DV DS OCOVOP AC ABAW AI AFMCMWMBMS JM EB

T 0 Reg Write-Back Value

T 100 New program counter

T 11 Reserved

Figure 8.1: Trace Port encodings

all other cases, the internal CPU operational flags are dumped. Tbl. 8.5 shows the meaning of these
bits.

Even though the trace port bits are rarely enough to reconstruct all of what takes place within
the ZipCPU’s core, they have historically been enough to diagnose any faults taking place within
hardware.

The profiler consists of three outputs, as shown in Tbl. 8.6.
The I/O lines to the ZipBones package are identical to those of the ZipSystem, with the only

exception that the ZipBones package has only a single interrupt line input. This means that the
ZipBones implementation practically depends upon an external interrupt controller.

8.4 Wishbone Datasheets

Both the ZipSystem and ZipBones wrappers supports two wishbone ports, a slave debug port and
a master port for the system itself. These are shown in Tbl. 8.7 and Tbl. 8.8 respectively. I do
not recommend that you connect these together through the interconnect, since 1) it doesn’t make
sense that the CPU should be able to halt itself, and 2) it helps to be able to reboot the CPU in
case something has gone terribly wrong and the CPU is stalling the entire interconnect. Rather, the
debug port of the CPU should be accessible regardless of the state of the master bus.

You may wish to notice that neither the LOCK nor the RTY (retry) wires have been connected to
the CPU’s master interface. If necessary, a rudimentary LOCK may be created by tying this wire to
the wb cyc line. As for the RTY, all the CPU recognizes at this point are bus errors—it cannot tell

www.opencores.com Rev. 3.0 58

Gisselquist Technology, LLC Specification 2023/06/26

CE Master chip enable is set, CPU is running
Hlt A halt has been requested
Bk External Break
Sl CPU sleep request
IE Interrupts are enabled, CPU is in user mode
BE Supervisor bus error flag
Tp Trap active
Il Supervisor illegal instruction flag
CC Clear cache request
PF Prefetch valid instruction
PI Prefetch instruction is illegal (bus err response)
DC The decode stage is enabled
DV A decoded instruction is available
DS The decode stage is stalled
OP The operand stage is enabled
OV The operand stage has a valid instruction
OP
AC The ALU is enabled for this instruction
AB The ALU is busy
AW The ALU will write its result when ready
AF The ALU will write flags once ready
MC A memory request is issued
MW The request is to write memory
MB The memory unit is busy
MS The memory unit is stalled, and will not accept a subsequent memory request
JM A new program counter is available
EB The decoder is executing an early branch

Table 8.5: Trace port flag bits

Port Width Direction Description

o prof stb 1 Output Set when the CPU moves on to the next instruction
o prof addr 30 Output The address of the next instruction
o prof ticks 31. . . 0 Output The number of clock ticks since startup, for which the

CPU has not been halted. This can be used to calculate
the number of ticks per instruction.

Table 8.6: Profiler outputs

www.opencores.com Rev. 3.0 59

Gisselquist Technology, LLC Specification 2023/06/26

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, Read/Write, single words only
Address Width 7b for ZipSystem, 6b for the ZipBones

wrapper
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering (Irrelevant)
Clock constraints See Sec. 8.1

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i dbg cyc CYC I

i dbg stb (CYC I)&(STB I)

i dbg we WE I

i dbg addr ADR I

i dbg data DAT I

o dbg ack ACK O

o dbg stall STALL O

o dbg data DAT O

Table 8.7: Wishbone Datasheet for the Debug Interface

www.opencores.com Rev. 3.0 60

Gisselquist Technology, LLC Specification 2023/06/26

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Master, Read/Write, pipelined
Address Width Configurable, maximum width references

232 bytes
Port size Configurable, minimum width is 32–bits
Port granularity 8–bit
Maximum Operand Size 32–bit from the CPU, full bus size from

the ZipDMA
Data transfer ordering Big–Endian
Clock constraints See Sec. 8.1

Signal Names

Signal Name Wishbone Equivalent
i clk CLK O

o wb cyc CYC O

o wb stb (CYC O)&(STB O)

o wb we WE O

o wb addr ADR O

o wb data DAT O

o wb sel SEL O

i wb ack ACK I

i wb stall STALL I

i wb data DAT I

i wb err ERR I

Table 8.8: Wishbone Datasheet for the CPU as Master

www.opencores.com Rev. 3.0 61

Gisselquist Technology, LLC Specification 2023/06/26

the difference between a temporary and a permanent bus error. Therefore, one might logically OR
the bus error and bus retry flags on input to the CPU’s i wb err flag for compatibility if necessary.

The final simplification made of the standard wishbone bus B4 specification, is that the strobe
lines are assumed to be zero in any slave if CYC I is zero, and the master is responsible for ensuring
that STB O is never true when CYC O is true in order to make this work. All of the ZipCPU Wishbone
components have have been designed with this assumption. Converting peripherals that have made
this assumption to work with masters that don’t guarantee this property is as simple as anding
the slave’s CYC I and STB I lines together. No change needs to be made to any ZipCPU master,
however, in order to access any peripheral that hasn’t been so simplified.

8.5 AXI/AXI-Lite Datasheets

AXI4 integration data sheets are not required by the AXI4 specification.

www.opencores.com Rev. 3.0 62

	Introduction
	Key Features
	CPU Architecture
	Instruction Set Architecture
	Operating Modes
	Register Set
	The Status Register, CC
	Instruction Format
	Instruction OpCodes
	Conditional Instructions
	Modifying Conditions
	Operand B
	Address Modes
	Move Operands
	Multiply Operations
	Divide Unit
	Compressed Instructions
	BREAK, Bus LOCK, SIM, and NOOP Instructions
	Floating Point
	Derived Instructions

	Interrupt Handling
	Memory Architecture
	Bus Standards
	Memory Model

	Debug Interface

	Operation
	CRT0
	System High
	A Programmable Delay
	Traditional Interrupt Handling
	Idle Task
	Context Switch

	Tool Suite and Application Binary Interface
	Executable File Format
	Stack
	Relocations
	Call format
	Built-ins
	Linker Scripts
	Memory Types
	The Entry Function
	Bootloader Tags
	Other required linker symbols

	Loading ZipCPU Programs
	Starting a ZipCPU program
	CRT0
	The Bootloader

	Debug Register Addressing
	Debug Port Registers
	Breakpoint Handling

	ZipSystem Registers

	ZipSystem Peripherals
	Interrupt Controller(s)
	Timer Register
	ZipJiffies
	Watchdog Timer
	Bus Watchdog

	Performance Counters
	ZipDMA Controller

	Integration
	ZipCPU Parameters
	Clocks
	I/O Ports
	Wishbone Datasheets
	AXI/AXI-Lite Datasheets

