[
@ Gisselquist
Technology, LLC

SDSPI CONTROLLER
SPECIFICATION

Dan Gisselquist, Ph.D.
dgisselq (at) ieee.org

April 25, 2024

Gl Gisselquist Technology, LLC Specification 2024/04/25

Copyright (C) 2024, Gisselquist Technology, LLC

This project is free software (firmware): you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see http://www.gnu.org/licenses/ for a copy.

WWW.opencores.com Rev. 0.31 ii

Gl Gisselquist Technology, LLC Specification 2024/04/25

Revision History

] Rev. \ Date \ Author \ Description
0.31 11/29/2019 Gisselquist Fixed the bit mapping in Fig. 4.1
0.3 11/05/2019 Gisselquist Major internal rewrite, formal properties
0.2 10/21/2019 Gisselquist Card detect feature
0.1 6/18/2016 Gisselquist First Draft

WWW.opencores.com Rev. 0.31 iii

Gl Gisselquist Technology, LLC Specification 2024/04/25

Contents

Page

1 Introduction e e e e 1
2 Architecture e e e e e 2
3 Operation o e e e e e e e e e 4
3.1 Constants L e e e e e e e e e e 4
3.2 SD-Card Setup e e e e 5
3.3 Reading Card Registers 7
3.4 Reading and Writing L e 9

4 Registers o e e e e 10
4.1 CMD Register o e 10
4.2 DATA Register e e 11
4.3 FIFO Registers o o o 0 e e 11
4.4 CONFIG Register e e 12

5 Wishbone Datasheet 13
6 Clocks . . . o o o e e 14
7 I/O Ports oo 15

WWW.opencores.com Rev. 0.31 iv

Gl Gisselquist Technology, LLC Specification 2024/04/25
Figures

Figure Page
4.1. CMD Register fields e e 10
4.2. CONFIG Register fieldso o o e 12
WWW.opencores.com Rev. 0.31 v

Gl Gisselquist Technology, LLC Specification 2024/04/25

Tables

Table Page
4.1. I/O Peripheral Registers 10
5.1. Wishbone Slave Datasheet o o oo o 13
7.1. List of IO ports o o o e 15

WWW.opencores.com Rev. 0.31 vi

Gl Gisselquist Technology, LLC Specification 2024/04/25

Preface

When I started this project, I was informed that other projects similar to this one existed. The
OpenRISC project has used an SD—Card controller, for example, as has the Google project vault.
Of these two, the first uses the full SD—Card interface which is unavailable on the XuLA2 board I
was using, and I could never find the code for the second.

Still, had I found such interfaces, I would’ve still had another reason for building my own:
controlling the license. By rolling my own interface, I can offer it to anyone interested in it under
the GPL license, such as you have here. Further, by not using code belonging to others, I am not
restricted or encumbered by any of their licenses—whether it be the GPL or otherwise. This code,
and specification document, are therefore completely the product of Gisselquist Technology, LLC.

This particular core also maintains an advantage over the OpenRISC core: It is a low logic core.
It only supports the SPI interface. It does not have any DMA features, although it will work nicely
with an external DMA. In short, it’s ideal for other low-logic work. In that line, I think, this core
has found its niche.

Dan Gisselquist, Ph.D.

WWW.opencores.com Rev. 0.31 vii

Gl Gisselquist Technology, LLC Specification 2024/04/25

1.

Introduction

This Verilog component creates a low-logic Wishbone interface to an SD card using the SPI interface.
Unlike the other OpenCores SD Card controller! which offers a full SD-interface, this controller
focuses on the SPI interface of the SD Card. While this is a slower interface, the SPI interface is
still a viable interface, and either hardware or low logic needs may require it. Unlike the SDIO
interface which requires 6 IO bits, five of them being bidirectional, the SPI interface only requires
4 10s with none of them requiring a bidirectional interface. Unlike other controllers, this particular
controller offers a lower level interface to the card. This shifts the complexity onto a nearby CPU,
while reducing the logic burden to the FPGA. This makes the SDSPI controller both more versatile,
in the face of potential changes to the card interface, but also less turn—key in the process.

While this core was written for the purpose of being used with the ZipCPU, as enhanced by
the ZipCPU’s Wishbone DMA, nothing in this core prevents it from being used with any other
architecture that supports the 32-bit Wishbone interface of this core.

This core has been written as a wishbone slave, not a master. Using the core together with a
separate master, such as a CPU or a DMA controller, only makes sense. This design, however, also
restricts the core from being able to use the multiple block write or multiple block read commands,
restricting it to single block read and write commands alone.

1See http://www.opencores.org/project,sdcard mass_storage_controller.

WWW.opencores.com Rev. 0.31 1

Gl Gisselquist Technology, LLC Specification 2024/04/25

2.

Architecture

This SD Card interface is designed to provide a means of commanding an SD Card, via the SPI
port, and returning its results.

It is completely controlled by its Wishbone bus slave interface. In particular a command register
is used to initiate interaction across the bus. A separate data register is used to provide an argument
to the command, and two FIFO registers are used when transferring larger amounts of data to the
card. We'll examine each of these interactions in turn.

Writes to the command register (CMD) may initiate actions across the port, whether they be
reads from or writes to the card. These writes take the form of sending a 48-bit command to the
card. The command sent to the card is taken from the lower 8-bits of the command register, and the
argument to the command is taken from the DATA register. The last 8-bits of the command sent
to the card are formed from a command CRC byte which the core generates internally. From the
perspective of the Wishbone bus, writes to the register will complete immediately, even though the
action they initiate may take much longer to complete. Further, writes made to the CMD register
will be silently ignored if the device is already busy.

Reads from the CMD register will always return immediately. In particular, the busy bit, as
returned by the CMD register, can be used to determine if the interface is still busy with a prior
operation.

There is one exception to the rule that writes take many clocks to complete, and that is writes
which configure the SDSPI port. Internal to the controller is a configuration register, also accessed
via the CMD register. This configuration register determines the speed of the port clock as well as
the amount of FIFO data which will be transmitted or received (up to 128 samples, or 512-bytes).
To read the current speed and FIFO configuration, write an 0x00bf value to the CMD register. This
will cause the DATA register to be filled with the internal configuration register. Likewise writing a
0x0ff to the CMD register will cause the current DATA value, or specifically those non-zero parts,
to be transferred to the internal configuration register possibly adjusting the clock divider and/or
the transfer length.

As part of each write to the CMD register, the controller must also be told which type of response
to expect from the SDSPI card. Responses can be either R1 (single byte), R1b (single byte, followed
by a variable delay), or R1 followed by up to four bytes, such as the R2, R3, or R7 responses.
(Expected responses for particular commands may be found in the SD Specifications documents."

Individual commands may or may not use the data memories, herein called FIFOs. Commands
that need use of the FIFO will be specified by the use_fifo bit of the CMD register. Commands

1This particular interface, and the examples using it, were built using the SD Specifications, Part 1: Physical
Layer Simplified Specification, Version 4.10, dated 22 January, 2013, and then later updated with the information
from Version 5.00, dated 10 August, 2016.

WWW.opencores.com Rev. 0.31 2

Gl Gisselquist Technology, LLC Specification 2024/04/25

writing to the card will also set the fifo_wr bit of the CMD register, whereas commands simply
reading from the fifo will set the use_fifo bit alone.

The DATA register is used during these transactions to first provide the argument to the CMD
interaction, and second to provide a place to put the R2, R3, or R7 response after the transaction
has completed. The register will be set to Oxffffffff if not set by the response.

This core supports two separate data memories. This allows a program to fill (or read) one
memory segment while the second one is being read from or written to by an ongoing SD operation.
The internal address will be cleared and reset to the beginning upon any write to the CMD register.
After clearing, the FIFO may be written (read) one value at a time. Reading both memories in any
interleaved fashion, however, is not allowed as they share a common internal address.

Currently, the core will detect a variety of errors in the interface. Once an error is detected, the
rest of any remaining command will be aborted. First, the core will detect an external Card reset.
Such a reset is used on the NexysVideo board to power down the card. Second, the core will detect
any CRC errors in data coming from the card. Finally, the core has an internal watchdog timer and
will detect any failure by the card to respond to any request. Any of these errors will set an error
bit in the CMD register. Once set, the core will refuse to begin further operations until the error is
cleared. Only writing this error bit back to the CMD register will clear it.

Finally, if a card detect bit is present, the core can detect if a card has been removed and so notify
the driver. A missing card detect signal, however, will not reset the core. Instead, the watchdog
timer should catch any missing card interactions. The card detect interface was added to simplify
FatF'S driver integration.

Now, if this discussion isn’t thoroughly confusing, let’s move on to the Operation chapter to see
some examples of how this might be used.

WWW.Opencores.com Rev. 0.31 3

Gl Gisselquist Technology, LLC Specification 2024/04/25

3.

Operation

This chapter will walk through some constants that can be used to simplify interaction with the
controller, the logic necessary to start up the card, to read its registers, and then examples of how
to read and write sectors from the SD Card using this interface.

3.1 Constants

Since so much of the interface is controlled by the CMD register, it helps to define several constants
which can be used when issuing commands to the SD Card. Lets discuss some of these constants.
First, as discussed in the last chapter, the SDSPI core maintains an auxiliary register to handle
FIFO length and clock speed. To set this register, we define SD_SETAUX to 0xOff. Thus, when
SD_SETAUX is written to the CMD register, the value of the DATA register is transferred to the
internal configuration. Likewise, we also define SD_READAUX to 0xObf. When this value is written
to the SD—Card, the internal configuration registers value will be copied to the DATA regiseter.
#define SD_SETAUX 0x0ff
#define SD_READAUX O0xObf
Second, every command to the SD—Card starts with a single byte. Of that byte, bit-7 must
be clear and bit 6 set. For this purpose, we define SD_CMD to be 0x040. Thus, SD_CMD+0 can be
used to send an SD command CMDO, and SD_CMD+1 can be used to send an SD command CMD1.
#define SD.CMD 0x040
Third, for those commands that will read an SD—Card register, such as those expecting an R2,
R3, or R7 response from the card, we define SD_READREG to be 0x0200. Thus, we can send a CMDS8
by writing SD_CMD | SD_READREG to the port. #define SD_READREG 0x0200
The next thing we’ll want to be able to do is use the FIFO. There are two types of commands
that use the FIFO, those that read from the card and those that write to the card. Both need the
FIFO bit set, so we’ll set SD_FIFO_0P to 0x0800 to be a read operation from the card, and the same

but with the write bit set SD_-WRITEOP will be set to 0x0c00 to write to the card.
#define SD_FIFO_.OP 0x800

#define SD_WRITEQOP 0xcO0
Finally, we want to be able to choose which FIFO we are using. For this purpose, we define
SD_ALTFIFO to be 0x01000. When this bitmask is included in a command, FIFO number one will
be used for the command data, otherwise FIFO zero. (Note that this is separate from the DATA
register, which is still used for any command argument.)
#define SD_ALTFIFO 0x1000
Two other constants are necessary: SD_BUSY, set to 0x04000, which can be used to test when
the SD interface is still busy, and SD_ERROR, set to 0x08000 which can be used to tell if an error has

WWW.opencores.com Rev. 0.31 4

Gl Gisselquist Technology, LLC Specification 2024/04/25

occurred. Clearing an error may be done by writing SD_ERROR back to the card, but to make things
simpler we also create SD_CLEARERR for the same purpose.
#define SD_BUSY 0x04000
#define SD_ERROR 0x08000
#define SD_CLEARERR 0x08000
The controller offers two means of knowing whether or not the card is present. The first is a
SD_PRESENTN bit. This is a debounced version of the card detect input, adjusted so that it will be
set if no card is present—to make error detection easier. If this bit is clear (normal operation), then
a card is present and ready to be set up. On the other hand, if the card detect input ever goes low
then the second bit, SD_REMOVED, will be set. Unlike the SD_PRESENTN bit which shows the current
state of whether a card is present or not, the SD_REMOVED bit is sticky. Once set, it will remain set
until explicitly written to. This allows us to clear it on an SD_GO_IDLE command, and otherwise
leave it alone. If the SD_.REMOVED flag ever goes high, then the driver knows it’s time to restart the
#define SD_REMOVED 0x40000
#define SD_PRESENTN 0x80000
SD_GO_IDLE is an abbreviation for command zero, but in a starting over context. Not only does it
send the command zero, but it will also clear any unacknowledged errors and clear the SD_REMOVED
bit. After this command, therefore, if the SD_.REMOVED bit ever goes high the protocol will need to
start over with another SD_GO_IDLE command. #define SD_GO_IDLE ((SD_REMOVED|SD_CLEARERR|SD_CMD)+0)
The two most important commands, though, are probably going to be those that read and write
a sector. For these, we shall define SD_.READ_SECTOR and SD_WRITE_SECTOR. As the first is a CMD17
to the card and the second a CMD24, these can be defined as:
#define SD_READ_SECTOR ((SD_CMD | SD_CLEARERR | SD_FIF0_0P)+17)
#define SD_WRITE_SECTOR ((SD_CMD|SD_CLEARERR|SD_WRITEQOP)+24)
‘Or’ing the SD_ALTFIFO mask to either of these commands will cause the interface to read from
or write to the alternate FIFO.
As a very last #define, we can define the macro SD_WAIT WHILE BUSY to wait until the SD
operation completes:
#define SD_WAIT WHILE BUSY while(CMD & SD_BUSY)
Alternatively, we could wait for an interrupt instead since the SDSPI core will create an interrupt
upon completion. For now, and for this example, we’ll ignore interrupts.

interface with a new card.

3.2 SD-Card Setup

Setting up an SD—Card takes a bit of work. There’s a series of commands and interactions that need
to take place with the card before the card can be used. You can read about how to do this within
the SD—Specification, so we won'’t repeat the how’s or why’s here. Instead, let’s focus for now on
how this interaction can be made to take place using this controller.

The first step in any start up sequence is to clear the card from any prior condition. Hence we
wait for the card to be no longer busy (it shouldn’t be busy anyway), and we then clear any errors:

SD_WAIT WHILE_BUSY;
CMD = SD_CLEARERR;

Now that the controller is idle (which it should’ve been from startup anyway), we can now set up
our interface. For this, we’ll set our clock rate to 400 KHz. The clock division register, sometimes

WWW.Opencores.com Rev. 0.31 5

Gl Gisselquist Technology, LLC Specification 2024/04/25

erroneously called the speed, is found in the lower sixteen bits of the soft-core configuration register.
The actual SPI clock frequency, given this value, will be:

foux

2 (CLKDIV + 1) (3:1)

fSDSPI

where fcpx is the rate of the syste clock provided to the core. Hence, since the XuLA2-LX25 SoC
runs at an 80 MHz clock, setting this value to 0x63 sets the SPI clock to 400 kHz.

DATA
CMD

0x063;
SD_SETAUX;

Note that we could have also set the higher order configuration bits to set the size of the FIFO. In
particular, the next four bits, bits 16-19, set the block length. Setting these to zero will cause the
controller to ignore the change, whereas setting the value to three will set the FIFO length to 23
bytes, and setting it to nine will set the FIFO length to the nominal 22 or 512 bytes.

The controller is now ready to send commands to the SD card. The first command to the card
is always a command zero, with zero data. This is sometimes called the GO_IDLE_STATE command.
We then wait for the command to complete:

DATA = 0;
CMD SD_GO_IDLE;
SD_WAIT WHILE_BUSY;

This will also clear any card-inserted SD_REMOVED flag. Once complete, the card should now be in
its idle state.

This is also the first command that might have an error. In particular, SD_ERR will be set if the
card does not respond to the command.

Some specifications require a CMD1, SEND_OP_COND, to be sent next. This is to tell the card
whether or not high capacity is supported. For this, we send a command one, SEND_OP_COND, with
an argument of 0x40000000 to tell it that we are able to support high capacity cards. (An argument
of zero would mean that we could not.)

DATA = 0x40000000;
CMD = SD_CMD+1;
SD_WAIT_WHILE_BUSY;

Not all cards require or accept a CMD1 anymore, and indeed cards in my most recent tests would
stop responding if given a CMD1. Further, it appears to have been removed from the most recent
SD-Card specification.

The card then needs to know what voltage it will be run at. We communicate this via a
SEND_IF _COND command, or CMDS8. Since most FPGA boards offer only fixed 3.3V I/O config-
urations, we tell the card we wish to run at 3.3V in the argument. The last eight bits of the
argument, however, are simply to determine whether communication has taken place. We set these
bits to 0x0a5, although they could be anything. The card will echo this value back in the response:

DATA = Ox1ab;

CMD = SD_CMD+8;

SD_WAIT WHILE BUSY;

// assert(DATA == 0z01a5);

WWW.Opencores.com Rev. 0.31 6

Gl Gisselquist Technology, LLC Specification 2024/04/25

The card will also echo back the voltage range, if it accepts it. Thus, we should receive 0x01a5 as a
response.

The card will now try to start up its own internal state machines. This could take a while. We
therefore poll the device, and wait for its startup sequence to complete:

bool dev_busy = false;
do {
// CMD55 gives us access to SD specific commands
DATA = 0;
CMD = SD_CMD+55;
SD_WAIT WHILE BUSY;

// Now we can issue the ACMD41, to get the idle
// status

DATA = 0x40000000;

CMD = SD_CMD+41;

DATA = 0Ox1ab;

CMD = SD_CMD+8;

SD_WAIT_WHILE_BUSY;

// The R1 response can be found in the lower 8 bits
// of the CMD register after the command is complete.
// Bit 1 of R1 indicates the card hasn’t finished its
// startup
dev_busy = CMD&1;

} while(dev_busy);

3.3 Reading Card Registers

Once the card has started, we can request its operating conditions register, or OCR register as it is
called. For this, we issue a READ_OCR command, or CMD58 by number. Since this command returns
a 32-bit value, we use the SD_READREG macro as well:

int OCR;
DATA = 0;
CMD = (SD_READREG|SD_CMD)+58;

SD_WAIT WHILE_BUSY;
OCR = DATA;

When I issue this command on my card, I get a 0xcOf£8000 response telling me that my card can
handle between 2.7 and 3.6 Volts, that it is a higher capacity card, and that it has completed its
startup sequence.

Now let’s switch up to a higher speed, and read the 16-byte Card Specific Data (CSD) register
field from the card. First, the switch to a 20 MHz clock and a 16-byte fifo,

WWW.Opencores.com Rev. 0.31 7

Gl Gisselquist Technology, LLC Specification 2024/04/25

DATA = 0x040001;
CMD = SD_SETAUX;

Remember that the 0x040000 switches to a memory length of 2% bytes. Likewise the 0x0001 com-
ponent of the configuration word switches our frequency to fecrx/4 or 20 MHz if starting with an
80 MHz clock. Now we can issue the SEND_CSD_COND, or CMD9, command itself. Note that we
didn’t need to wait for the SD_SETAUX command to complete. Further, since this command is going
to read from the SD card into our internal memory, we also need to include the SD_FIF0_OP part of
the command:

int CSD[4];

DATA = 0;

CMD = (SD_FIFO_OP|SD_CMD)+9;

SD_WAIT WHILE_BUSY;

for(int i=0; i<4; i++)
CSD[i] = FIFO[O];

Once the command is complete, we can read the four 32-bit words of the CSD register from the
memory area, as shown above. Alternatively, we could have issued another command first, before
reading that FIFO result.

We could also read the Card Identification (CID) register if we wanted as well. Doing so would
require the same sequence as above, save only that we would’ve written a (SD_READREG|SD_CMD)+10
to CMD.

Reading the STATUS is similar, only the response to the SEND_STATUS command is an 8-bit
value from an R2 response, not the 32-bit values of the R3 (OCR) or R7 responses. The core will
still read 32-bits, however, and so it will place the R2 response in the upper 32-bits of the status
word. It’s still provided in the DATA register, so we only need to send (SD_READREG|SD_CMD)+13
to the CMD register in order to read its result from the DATA register. The status register will be
returned in the top eight bits of the DATA register (the interface still reads 32-bits, even though
the other 24 can be ignored), so:

int card_status;

DATA = 0;

CMD = (SD_READREG|SD_CMD)+13; SD_WAIT WHILE_ BUSY;
card_status = DATA>>24;

As a final register example, let’s read the SD Card Configuration Register (SCR). This register is
read in a fashion very similar to the CSD register, except that because of its width the FIFO needs
to be set for a shorter register width:

int SCR[2];

// Set the FIFO length to 8 bytes, or 23.

DATA = 0x030000;

CMD = SD_SETAUX;

// Issue an ALT command, to get the other command set.
DATA = 0;

CMD = (SD_CMD)+55;

SD_WAIT WHILE_BUSY;

WWW.Opencores.com Rev. 0.31 8

Gl Gisselquist Technology, LLC Specification 2024/04/25

// Now get the SCR register.
DATA = 0;
CMD = (SD_FIFO_OP|SD_CMD)+51;
SD_WAIT WHILE BUSY;
for(int i=0; i<2; i++)

SCR[i] = FIFO[O0];

3.4 Reading and Writing

For our first example, let’s read the boot sector from our card. For this, we set our FIFO back to
512 bytes, and then issue a read sector command:

void read(int sector_num, int *buf) {
// Set the FIFO length to 512 bytes, 2°.
DATA = 0x090000;
CMD = SD_SETAUX;
// Read from the requested sector
DATA = sector_num;
CMD = SD_READ_SECTOR;
SD_WAIT WHILE BUSY;
for(int i=0; i<512/4; i++)
buf [i] = FIFO[O0];

We could also write to any sector on the card in a very similar fashion:

void write(int sector_num, int *buf) {

// Set the FIFO length to 512 words, 2°.

DATA = 0x090000;

CMD = SD_SETAUX;

// Fill the FIFO with our data

for(int i=0; i<512/4; i++)
FIFO[0] = bufl[il;

// Issue the write command

DATA = sector_num;

CMD = SD_WRITE_SECTOR;

SD_WAIT_WHILE_BUSY;

As mentioned in the introductory chapter, this interface does not support reading or writing
multiple blocks at once. Hence, I expect all interaction using this card controller to be accomplished
through these two commands: reading a single sector, and writing to a single sector.

WWW.Opencores.com Rev. 0.31 9

Gl Gisselquist Technology, LLC Specification 2024/04/25

4.

Registers

As mentioned in the last two chapters, the SDSPI core has only four registers, and one internal
register. These are shown in Tbl. 4.1. The most powerful of these is the command register, CMD,

] Name ‘ Address ‘ Width ‘ Access ‘ Description ‘
CMD 0x00 32 R/W SDSPI Command and status register
DAT 0x01 32 R/W SDSPI return data/argument register
FIFOI0] 0x02 32 R/W FIFOI0] data
FIFO[1] 0x03 32 R/W FIFO[1] data
CONFIG 12 R/W Internal configuration register

Table 4.1: 1/O Peripheral Registers

so we’ll spend most of our time discussing that one.

4.1 CMD Register

Writes to the CMD register will cause the device to act, or if the device is already busy then any
writes will be ignored. The CMD register itself is composed of several packed bit fields, as shown in
Fig. 4.1. Perhaps the most important of these is the R1/CMD field. On any write, if bits 7-6 are the
two bits 2’b01 and if the card is idle, then the command contained in the rest of the R1/CMD field
is sent to the card. Once the command is complete, these 8-bits represent the R1 response from
the device. According to the SD specification, R1 should be one while the device is still starting,
or zero in the case of no error. Further interpretation of this value may be found in the SD—Card
Specification.

Of next importance is the R field. This specifies the response the controller should expect from
the card given the command that was issued to the card. There are three possible values for this
field: 2'b00, meaning the controller should expect an R1 response, 2’601, meaning the controller

31 30 29 28 27 26 25 24 23 2221201918 1716151413121110 9 8 7 6 5 4 3 2 1 0

Unused PR [E[Blo[1[Fm R | R1/CMD]

Figure 4.1: CMD Register fields

WWW.OpPencores.com Rev. 0.31 10

Gl Gisselquist Technology, LLC Specification 2024/04/25

should expect an R1b response, and 2'b10 meaning the controller should expect an R2/R3/R7 32—
bit response.

The F, or FIFO, field should be set if the command being given requires a data transmission
to accompany it, either coming from or going to the internal memories (FIFOs). W should be set
at the same time if the controller will be writing to the card from the FIFO, and cleared if the
controller will be reading from the card into the FIFO. Finally, I specifies which data memory will
be used: 0 for the primary, or 1 for the alternate.

While the command is running, the BUSY or B bit will be set.

Once the command has completed, the E bit may be set if either the command timed out, a card
reset was received, or a CRC error was noted while reading from the card. It will also be set if the
R1 response indicates an error of some type has occurred, such as a CRC error when writing to the
card. Errors may be cleared by writing a 1 to the F bit. Error conditions will persist until cleared.
While an error condition is present, the data memories sub-components be held in reset preventing
any data transactions.

The R register is used to detect if a card is ever removed. This bit is cleared by writing a ‘1’ to
it—typically as part of the SD_GO_IDLE command.

Finally, the P register can be used to determine if a card is present at all. If P is high, no card
is present. If P is low, a card is present. If P is low but R is high, then a card has been inserted
since the last SD_GO_IDLE command, and the new card should be initialized.

4.2 DATA Register

Compared to the CMD register, the DATA register is quite simple. Like the CMD register, the
DATA register may only be written when the interface is idle. When issuing a command to the
device, the 32-bit argument for the command is taken from the DATA register. When reading the
results of a device command, the DATA register will contain the R2 response in the upper 8-bits,
or any R3 or R7 response in the full 32-bits. Following a memory block write command, the DATA
register will contain the token acknowledging the command.

4.3 FIFO Registers

The SDSPI controller maintains two 128 word (512 byte) memory areas called FIFOs. Reads from
the card will write data into one of the two FIFQO’s, whereas writes to the card will read data out
from one of the FIFO’s. Which FIFO the card uses is determined by the I bit in the CMD register
(above).

Further, upon any write to the CMD register, the FIFO address will be set to point to the
beginning of the FIFO.

The purpose of the FIFO’s is to allow one to issue a command to read into one FIFO, then when
that command is complete to read into a second FIFO. While the second command is ongoing, a
CPU or DMA may read the data out of the first FIFO and place it wherever into memory. Then,
when the second read is complete, a third read may be issued into the first buffer while the data is
read out of the second and so forth.

WWW.opencores.com Rev. 0.31 11

Gl Gisselquist Technology, LLC Specification 2024/04/25

31 30 29 28 27 26 25 24 23 2221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0

[Rsrvd MaxLelf Rsrvd [LeFIFQ) 0 CLKDIV

Figure 4.2: CONFIG Register fields

This interleaving approach, sometimes called ping-pong buffering, can also be used for writing:
Write into one FIFO, issue a write command, write into the second FIFO, wait for the first write
command to complete, issue a second write command, and so forth.

One item to note before closing: there is only one internal address register when accessing the
FIFO from the wishbone bus. Attempts to read from or write to either FIFO from the wishbone
bus will increment this address register. Interleaved read, or write attempts, such as reading one
item from FIFO[0] and writing another item to FIFO[1], will each increment the internal address
pointer so that the result is likely to be undesirable. For this reason, it is recommended that only
one FIFO be read from or written by the wishbone bus at a time.

4.4 CONFIG Register

The CONFIG register controls the SPI clock rate and the FIFO size. Specifically, with regards to
the FIFO size, it controls how many bytes will be written into the FIFO (which is really of a fixed
size) before the expecting a CRC, or equivalently how many bytes to read out of the FIFO before
adding a CRC. The fields of this register are shown in Fig. 4.2.

The CLKDIV field sets a divisor from the current clock to create a SPI clock. The minimum
value of this field is ‘1’, corresponding to dividing the input clock by ‘4’. As discussed earlier, the
input clock will be divided by twice this field plus one. Hence, setting this field to one will cause
the original clock to be divided by 2(1 + CLKDIV) or 4. Thus an 80 MHz input clock will become a
20 MHz SPI clock. Attempts to set this value to zero will be quietly ignored.

The LgFIFO field sets the log, base two, of the any memory transfer size. The actual transfer
length will be will be 29F'F° bytes. The maximum size the device will support is returned by the
MaxLgF field, which is currently set to 9 for a 512 byte memory area. This matches the current
specification, which limits sectors to only ever being 512 bytes.

To set the CONFIG register, first set the DATA register to the new config value (or zero for
the fields that will not change), and then write 0x0ff to the CMD register. Likewise, to read the
CONFIG register write a 0x0bf to the CMD register and read the CONFIG register from the DATA
register. (Only the upper two bits of these commands are ever checked.)

WWW.opencores.com Rev. 0.31 12

Gl Gisselquist Technology, LLC Specification 2024/04/25

5.

Wishbone Datasheet

Thl. 5.1 is required by the wishbone specification, and so it is included here. Note that all wishbone

] Description ‘ Specification ‘
Revision level of wishbone WB B4 spec
Type of interface Slave, (Block/pipelined) Read/Write
Port size 32-bit
Port granularity 32-bit
Maximum Operand Size 32-bit
Data transfer ordering Big Endian
Clock constraints (See below)
Signal Name Wishbone Equivalent
i_clk CLK_-I
i_wb_cyc CcYC_I
i_wb_stb STB_I
. i_wb_we WE_I
Signal Names i wb.addr ADET
i_wb_data DAT.I
o_wb_ack ACK_0
o_wb_stall STALL_O
o_wb_data DAT_0

Table 5.1: Wishbone Slave Datasheet

operations may be pipelined, to include FIFO operations, for speed.

The particular constraint on the clock is not really a wishbone constraint, but rather an SD—Card
constraint. Not all cards can handle clocks faster than 25 MHz. For this reason, the wishbone clock,
which forms the master clock for this entire controller, must be divided down so that the SPI clock
is within the limits the card can handle.

WWW.OpPencores.com Rev. 0.31 13

Gl Gisselquist Technology, LLC Specification 2024/04/25

6.

Clocks

This core has been tested on a Spartan 6 using an 80 MHz system clock, as well as on an Artix 7
using a 100 MHz system clock.

WWW.opencores.com Rev. 0.31 14

Gl Gisselquist Technology, LLC Specification 2024/04/25

7.

I/0 Ports

Table. 7.1 lists all of the input and output ports to this core. You may notice these inputs and

] Port ‘ Width ‘ Direction ‘ Description
] iclk \ 1 \ Input \ Clock
’ i_sd_reset \ 1 \ Input \ SD-Card reset, active high
iwb_cyc 1 Output Wishbone bus cycle active
i_wb_stb 1 Output Wishbone Strobe, true one clock only for each interac-
tion
i_wb_we 1 Output Wishbone Write-Enable line
i_wb_addr 2 Output Selects our I/0 register
i_wb_data 32 Output Incoming wishbone bus data
o_wb_ack 1 Output Acknowledge a WB request, always true one clock after
the request
o_wb_stall 1 Output Always zero
o_wb_data 32 Output 32-bit wishbone data response
o_csn 1 Output Chip-select and SPI request line
o_sck 1 Output SD Card clock
0_mosi 1 Output Output data wire to the SD Card
i_miso 1 Input Input data wire from the SD Card
’ i_card_detect \ 1 \ Input \ High if the hardware detects a card, low o.w.
o_int 1 Output An interrupt line to the CPU controller
i_bus_grant 1 Input True if the SDSPI controller is controlling the bus
o_debug 32 Output See Verilog for details

Table 7.1: List of IO ports

outputs are divided into sections: the master clock, the wishbone bus, the SPI interface to the card,
and three other wires. Of these, the last two chapters discussed the wishbone bus interface and the
clock. The SPI interface should be fairly straightforward, so we’ll move on and discuss the other
four wires.

The i_card_detect wire should come from any card detection circuitry if present. This is an
active high input. It’s used to set both the SD_PRESENTN (active low) and REMOVED bits.

WWW.OpPencores.com Rev. 0.31 15

Gl Gisselquist Technology, LLC Specification 2024/04/25

This controller supports an interrupt line, o_int. Upon completion of any operation, when the
SPI chip select line is deactivated (raised high), o_int will be strobed for one cycle. It is up to the
logic using this chip to catch and use that interrupt line or ignore it. In particular, it is possible
to use that interrupt line to trigger a DMA service to move data in or out of the FIFO, although
the details of that are beyond this discussion here. Removing the SD card will also cause an o_int
interrupt, but only if the SD_REMOVED bit is clear.

Optionally, if the OPT_SPI_ARBITRATION bit is set, then the controller will use the i_bus_grant
input as feedback from a SPI bus arbiter. This allows the controller to operate in shared SPI
environments, such as when multiple cores wish to drive the the same two wires (o_sck and o mosi).
When enabled, any time the controller lowers the o_cs.n line, it will then wait for i_bus_grant
to go high. This is the signal from the outside arbiter indicating that this chip has been selected
and that it is now directly driving the o_sck and o_mosi pins. Should you not need this in your
environment, you can simply leave this line wired high or remove this logic entirely by clearing the
OPT_SPI_ARBITRATION parameter.

The final bus of 32—wires, o_debug, is defined internally and used when/if necessary to debug
the core and watch what is going on within it. These wires may be left unconnected in most
implementations, as they are not necessary for using the actually controller.

WWW.OpPencores.com Rev. 0.31 16

	Introduction
	Architecture
	Operation
	Constants
	SD–Card Setup
	Reading Card Registers
	Reading and Writing

	Registers
	CMD Register
	DATA Register
	FIFO Registers
	CONFIG Register

	Wishbone Datasheet
	Clocks
	I/O Ports

