Files
taxi-bsl/src/eth/example/KC705/fpga_10g/rtl/fpga.sv
2025-11-09 14:24:05 -08:00

557 lines
12 KiB
Systemverilog

// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga #
(
// simulation (set to avoid vendor primitives)
parameter logic SIM = 1'b0,
// vendor ("GENERIC", "XILINX", "ALTERA")
parameter string VENDOR = "XILINX",
// device family
parameter string FAMILY = "kintex7",
// Use 90 degree clock for RGMII transmit
parameter logic USE_CLK90 = 1'b1,
// BASE-T PHY type (GMII, RGMII)
parameter BASET_PHY_TYPE = "GMII",
// SFP rate selection (0 for 1G, 1 for 10G)
parameter logic SFP_RATE = 1'b1,
// Invert SFP data pins
parameter logic SFP_INVERT = 1'b1,
// 10G MAC configuration
parameter logic CFG_LOW_LATENCY = 1'b1,
parameter logic COMBINED_MAC_PCS = 1'b1
)
(
/*
* Clock: 200MHz
* Reset: Push button, active high
*/
input wire logic clk_200mhz_p,
input wire logic clk_200mhz_n,
input wire logic reset,
/*
* GPIO
*/
input wire logic btnu,
input wire logic btnl,
input wire logic btnd,
input wire logic btnr,
input wire logic btnc,
input wire logic [3:0] sw,
output wire logic [7:0] led,
/*
* UART: 115200 bps, 8N1
*/
input wire logic uart_rxd,
output wire logic uart_txd,
input wire logic uart_rts,
output wire logic uart_cts,
/*
* I2C
*/
inout wire logic i2c_scl,
inout wire logic i2c_sda,
output wire logic i2c_mux_reset,
/*
* Ethernet: SFP+
*/
input wire logic sfp_rx_p,
input wire logic sfp_rx_n,
output wire logic sfp_tx_p,
output wire logic sfp_tx_n,
input wire logic sfp_mgt_refclk_p,
input wire logic sfp_mgt_refclk_n,
output wire logic si5324_rst,
input wire logic si5324_int,
output wire logic sfp_tx_disable_b,
/*
* Ethernet: 1000BASE-T GMII or RGMII
*/
input wire logic phy_rx_clk,
input wire logic [7:0] phy_rxd,
input wire logic phy_rx_dv,
input wire logic phy_rx_er,
output wire logic phy_gtx_clk,
input wire logic phy_tx_clk,
output wire logic [7:0] phy_txd,
output wire logic phy_tx_en,
output wire logic phy_tx_er,
output wire logic phy_reset_n,
input wire logic phy_int_n
);
// Clock and reset
wire clk_200mhz_ibufg;
// Internal 125 MHz clock
wire clk_mmcm_out;
wire clk_int;
wire clk90_mmcm_out;
wire clk90_int;
wire rst_int;
wire clk_200mhz_mmcm_out;
wire clk_200mhz_int;
wire mmcm_rst = reset;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFGDS
clk_200mhz_ibufgds_inst(
.I(clk_200mhz_p),
.IB(clk_200mhz_n),
.O(clk_200mhz_ibufg)
);
// MMCM instance
MMCME2_BASE #(
// 200 MHz input
.CLKIN1_PERIOD(5.0),
.REF_JITTER1(0.010),
// 200 MHz input / 1 = 200 MHz PFD (range 10 MHz to 500 MHz)
.DIVCLK_DIVIDE(1),
// 200 MHz PFD * 5 = 1000 MHz VCO (range 600 MHz to 1440 MHz)
.CLKFBOUT_MULT_F(5),
.CLKFBOUT_PHASE(0),
// 1000 MHz VCO / 8 = 125 MHz, 0 degrees
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// 1000 MHz VCO / 8 = 125 MHz, 90 degrees
.CLKOUT1_DIVIDE(8),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(90),
// 1000 MHz VCO / 5 = 200 MHz, 0 degrees
.CLKOUT2_DIVIDE(5),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// 200 MHz input
.CLKIN1(clk_200mhz_ibufg),
// direct clkfb feeback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(clk_mmcm_out),
.CLKOUT0B(),
// 125 MHz, 90 degrees
.CLKOUT1(clk90_mmcm_out),
.CLKOUT1B(),
// 200 MHz, 0 degrees
.CLKOUT2(clk_200mhz_mmcm_out),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(mmcm_rst),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm_locked)
);
BUFG
clk_bufg_inst (
.I(clk_mmcm_out),
.O(clk_int)
);
BUFG
clk90_bufg_inst (
.I(clk90_mmcm_out),
.O(clk90_int)
);
BUFG
clk_200mhz_bufg_inst (
.I(clk_200mhz_mmcm_out),
.O(clk_200mhz_int)
);
taxi_sync_reset #(
.N(4)
)
sync_reset_inst (
.clk(clk_int),
.rst(~mmcm_locked),
.out(rst_int)
);
// GPIO
wire btnu_int;
wire btnl_int;
wire btnd_int;
wire btnr_int;
wire btnc_int;
wire [3:0] sw_int;
taxi_debounce_switch #(
.WIDTH(9),
.N(4),
.RATE(125000)
)
debounce_switch_inst (
.clk(clk_int),
.rst(rst_int),
.in({btnu,
btnl,
btnd,
btnr,
btnc,
sw}),
.out({btnu_int,
btnl_int,
btnd_int,
btnr_int,
btnc_int,
sw_int})
);
wire uart_rxd_int;
wire uart_rts_int;
taxi_sync_signal #(
.WIDTH(2),
.N(2)
)
sync_signal_inst (
.clk(clk_int),
.in({uart_rxd, uart_rts}),
.out({uart_rxd_int, uart_rts_int})
);
// I2C
wire i2c_scl_i;
wire i2c_scl_o;
wire i2c_sda_i;
wire i2c_sda_o;
assign i2c_scl_i = i2c_scl;
assign i2c_scl = i2c_scl_o ? 1'bz : 1'b0;
assign i2c_sda_i = i2c_sda;
assign i2c_sda = i2c_sda_o ? 1'bz : 1'b0;
wire i2c_init_scl_i = i2c_scl_i;
wire i2c_init_scl_o;
wire i2c_init_sda_i = i2c_sda_i;
wire i2c_init_sda_o;
wire i2c_int_scl_i = i2c_scl_i;
wire i2c_int_scl_o;
wire i2c_int_sda_i = i2c_sda_i;
wire i2c_int_sda_o;
assign i2c_scl_o = i2c_init_scl_o & i2c_int_scl_o;
assign i2c_sda_o = i2c_init_sda_o & i2c_int_sda_o;
// Si5324 init
taxi_axis_if #(.DATA_W(12)) si5324_i2c_cmd();
taxi_axis_if #(.DATA_W(8)) si5324_i2c_tx();
taxi_axis_if #(.DATA_W(8)) si5324_i2c_rx();
assign si5324_i2c_rx.tready = 1'b1;
wire si5324_i2c_busy;
assign si5324_rst = ~rst_int;
taxi_i2c_master
si5324_i2c_master_inst (
.clk(clk_int),
.rst(rst_int),
/*
* Host interface
*/
.s_axis_cmd(si5324_i2c_cmd),
.s_axis_tx(si5324_i2c_tx),
.m_axis_rx(si5324_i2c_rx),
/*
* I2C interface
*/
.scl_i(i2c_init_scl_i),
.scl_o(i2c_init_scl_o),
.sda_i(i2c_init_sda_i),
.sda_o(i2c_init_sda_o),
/*
* Status
*/
.busy(),
.bus_control(),
.bus_active(),
.missed_ack(),
/*
* Configuration
*/
.prescale(SIM ? 32 : 312),
.stop_on_idle(1)
);
si5324_i2c_init #(
.SIM_SPEEDUP(SIM)
)
si5324_i2c_init_inst (
.clk(clk_int),
.rst(rst_int),
/*
* I2C master interface
*/
.m_axis_cmd(si5324_i2c_cmd),
.m_axis_tx(si5324_i2c_tx),
/*
* Status
*/
.busy(si5324_i2c_busy),
/*
* Configuration
*/
.start(1'b1)
);
wire phy_rgmii_rx_clk_int;
wire [3:0] phy_rgmii_rxd_int;
wire phy_rgmii_rx_ctl_int;
wire phy_rgmii_tx_clk_int;
wire [3:0] phy_rgmii_txd_int;
wire phy_rgmii_tx_ctl_int;
wire phy_gmii_rx_clk_int;
wire [7:0] phy_gmii_rxd_int;
wire phy_gmii_rx_dv_int;
wire phy_gmii_rx_er_int;
wire phy_gmii_gtx_clk_int;
wire phy_gmii_tx_clk_int;
wire [7:0] phy_gmii_txd_int;
wire phy_gmii_tx_en_int;
wire phy_gmii_tx_er_int;
if (BASET_PHY_TYPE == "RGMII") begin : phy_if
assign phy_rgmii_rx_clk_int = phy_rx_clk;
// IODELAY elements for RGMII interface to PHY
IDELAYCTRL
idelayctrl_inst (
.REFCLK(clk_200mhz_int),
.RST(rst_int),
.RDY()
);
for (genvar n = 0; n < 4; n = n + 1) begin : phy_rxd_idelay_bit
IDELAYE2 #(
.IDELAY_TYPE("FIXED")
)
idelay_inst (
.IDATAIN(phy_rxd[n]),
.DATAOUT(phy_rgmii_rxd_int[n]),
.DATAIN(1'b0),
.C(1'b0),
.CE(1'b0),
.INC(1'b0),
.CINVCTRL(1'b0),
.CNTVALUEIN(5'd0),
.CNTVALUEOUT(),
.LD(1'b0),
.LDPIPEEN(1'b0),
.REGRST(1'b0)
);
end
IDELAYE2 #(
.IDELAY_TYPE("FIXED")
)
phy_rx_ctl_idelay (
.IDATAIN(phy_rx_dv),
.DATAOUT(phy_rgmii_rx_ctl_int),
.DATAIN(1'b0),
.C(1'b0),
.CE(1'b0),
.INC(1'b0),
.CINVCTRL(1'b0),
.CNTVALUEIN(5'd0),
.CNTVALUEOUT(),
.LD(1'b0),
.LDPIPEEN(1'b0),
.REGRST(1'b0)
);
assign phy_gtx_clk = phy_rgmii_tx_clk_int;
assign phy_txd[3:0] = phy_rgmii_txd_int;
assign phy_tx_en = phy_rgmii_tx_ctl_int;
assign phy_txd[7:4] = '0;
assign phy_tx_er = 1'b0;
assign phy_gmii_rx_clk_int = 1'b0;
assign phy_gmii_rxd_int = '0;
assign phy_gmii_rx_dv_int = 1'b0;
assign phy_gmii_rx_er_int = 1'b0;
assign phy_gmii_tx_clk_int = 1'b0;
end else begin : phy_if
assign phy_rgmii_rx_clk_int = 1'b0;
assign phy_rgmii_rxd_int = '0;
assign phy_rgmii_rx_ctl_int = 1'b0;
assign phy_gmii_rx_clk_int = phy_rx_clk;
assign phy_gmii_rxd_int = phy_rxd;
assign phy_gmii_rx_dv_int = phy_rx_dv;
assign phy_gmii_rx_er_int = phy_rx_er;
assign phy_gtx_clk = phy_gmii_gtx_clk_int;
assign phy_gmii_tx_clk_int = phy_tx_clk;
assign phy_txd = phy_gmii_txd_int;
assign phy_tx_en = phy_gmii_tx_en_int;
assign phy_tx_er = phy_gmii_tx_er_int;
end
fpga_core #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY),
.USE_CLK90(USE_CLK90),
.BASET_PHY_TYPE(BASET_PHY_TYPE),
.SFP_INVERT(SFP_INVERT),
.CFG_LOW_LATENCY(CFG_LOW_LATENCY),
.COMBINED_MAC_PCS(COMBINED_MAC_PCS)
)
core_inst (
/*
* Clock: 125MHz
* Synchronous reset
*/
.clk(clk_int),
.clk90(clk90_int),
.rst(rst_int),
/*
* GPIO
*/
.btnu(btnu_int),
.btnl(btnl_int),
.btnd(btnd_int),
.btnr(btnr_int),
.btnc(btnc_int),
.sw(sw_int),
.led(led),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
.uart_rts(uart_rts_int),
.uart_cts(uart_cts),
/*
* I2C
*/
.i2c_scl_i(i2c_int_scl_i),
.i2c_scl_o(i2c_int_scl_o),
.i2c_sda_i(i2c_int_sda_i),
.i2c_sda_o(i2c_int_sda_o),
/*
* Ethernet: SFP+
*/
.sfp_rx_p(sfp_rx_p),
.sfp_rx_n(sfp_rx_n),
.sfp_tx_p(sfp_tx_p),
.sfp_tx_n(sfp_tx_n),
.sfp_mgt_refclk_p(sfp_mgt_refclk_p),
.sfp_mgt_refclk_n(sfp_mgt_refclk_n),
.sfp_tx_disable_b(sfp_tx_disable_b),
/*
* Ethernet: 1000BASE-T GMII/RGMII/SGMII
*/
.phy_rgmii_rx_clk(phy_rgmii_rx_clk_int),
.phy_rgmii_rxd(phy_rgmii_rxd_int),
.phy_rgmii_rx_ctl(phy_rgmii_rx_ctl_int),
.phy_rgmii_tx_clk(phy_rgmii_tx_clk_int),
.phy_rgmii_txd(phy_rgmii_txd_int),
.phy_rgmii_tx_ctl(phy_rgmii_tx_ctl_int),
.phy_gmii_rx_clk(phy_gmii_rx_clk_int),
.phy_gmii_rxd(phy_gmii_rxd_int),
.phy_gmii_rx_dv(phy_gmii_rx_dv_int),
.phy_gmii_rx_er(phy_gmii_rx_er_int),
.phy_gmii_gtx_clk(phy_gmii_gtx_clk_int),
.phy_gmii_tx_clk(phy_gmii_tx_clk_int),
.phy_gmii_txd(phy_gmii_txd_int),
.phy_gmii_tx_en(phy_gmii_tx_en_int),
.phy_gmii_tx_er(phy_gmii_tx_er_int),
.phy_reset_n(phy_reset_n),
.phy_int_n(phy_int_n)
);
endmodule
`resetall