Files
taxi-bsl/src/axi/rtl/taxi_axi_adapter_wr.sv
Alex Forencich 94a821192c axi: Add AXI width converter module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-08-30 21:10:08 -07:00

905 lines
38 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 width adapter
*/
module taxi_axi_adapter_wr #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.wr_slv s_axi_wr,
/*
* AXI4 master interface
*/
taxi_axi_if.wr_mst m_axi_wr
);
// extract parameters
localparam S_DATA_W = s_axi_wr.DATA_W;
localparam ADDR_W = s_axi_wr.ADDR_W;
localparam CL_ADDR_W = $clog2(ADDR_W);
localparam S_STRB_W = s_axi_wr.STRB_W;
localparam ID_W = s_axi_wr.ID_W;
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN;
localparam AWUSER_W = s_axi_wr.AWUSER_W;
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN;
localparam WUSER_W = s_axi_wr.WUSER_W;
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN;
localparam BUSER_W = s_axi_wr.BUSER_W;
localparam M_DATA_W = m_axi_wr.DATA_W;
localparam M_STRB_W = m_axi_wr.STRB_W;
localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W);
localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W);
localparam S_BYTE_LANES = S_STRB_W;
localparam M_BYTE_LANES = M_STRB_W;
localparam S_BYTE_SIZE = S_DATA_W/S_BYTE_LANES;
localparam M_BYTE_SIZE = M_DATA_W/M_BYTE_LANES;
localparam logic [2:0] S_BURST_SIZE = 3'($clog2(S_STRB_W));
localparam logic [2:0] M_BURST_SIZE = 3'($clog2(M_STRB_W));
// check configuration
if (S_BYTE_SIZE * S_STRB_W != S_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (M_BYTE_SIZE * M_STRB_W != M_DATA_W)
$fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)");
if (S_BYTE_SIZE != M_BYTE_SIZE)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES)
$fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)");
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
assign m_axi_wr.awid = s_axi_wr.awid;
assign m_axi_wr.awaddr = s_axi_wr.awaddr;
assign m_axi_wr.awlen = s_axi_wr.awlen;
assign m_axi_wr.awsize = s_axi_wr.awsize;
assign m_axi_wr.awburst = s_axi_wr.awburst;
assign m_axi_wr.awlock = s_axi_wr.awlock;
assign m_axi_wr.awcache = s_axi_wr.awcache;
assign m_axi_wr.awprot = s_axi_wr.awprot;
assign m_axi_wr.awqos = s_axi_wr.awqos;
assign m_axi_wr.awregion = s_axi_wr.awregion;
assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0;
assign m_axi_wr.awvalid = s_axi_wr.awvalid;
assign s_axi_wr.awready = m_axi_wr.awready;
assign m_axi_wr.wdata = s_axi_wr.wdata;
assign m_axi_wr.wstrb = s_axi_wr.wstrb;
assign m_axi_wr.wlast = s_axi_wr.wlast;
assign m_axi_wr.wuser = WUSER_EN ? s_axi_wr.wuser : '0;
assign m_axi_wr.wvalid = s_axi_wr.wvalid;
assign s_axi_wr.wready = m_axi_wr.wready;
assign s_axi_wr.bid = m_axi_wr.bid;
assign s_axi_wr.bresp = m_axi_wr.bresp;
assign s_axi_wr.buser = BUSER_EN ? m_axi_wr.buser : '0;
assign s_axi_wr.bvalid = m_axi_wr.bvalid;
assign m_axi_wr.bready = s_axi_wr.bready;
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
// output bus is wider
localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES;
localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W;
localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES);
localparam CL_SEG_COUNT = $clog2(SEG_COUNT);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [WUSER_W-1:0] wuser_reg = '0, wuser_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic burst_active_reg = 1'b0, burst_active_next;
logic first_transfer_reg = 1'b0, first_transfer_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
logic [ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
logic [1:0] s_axi_bresp_reg = '0, s_axi_bresp_next;
logic [BUSER_W-1:0] s_axi_buser_reg = '0, s_axi_buser_next;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ID_W-1:0] m_axi_awid_reg = '0, m_axi_awid_next;
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0, m_axi_awaddr_next;
logic [7:0] m_axi_awlen_reg = '0, m_axi_awlen_next;
logic [2:0] m_axi_awsize_reg = '0, m_axi_awsize_next;
logic [1:0] m_axi_awburst_reg = '0, m_axi_awburst_next;
logic m_axi_awlock_reg = '0, m_axi_awlock_next;
logic [3:0] m_axi_awcache_reg = '0, m_axi_awcache_next;
logic [2:0] m_axi_awprot_reg = '0, m_axi_awprot_next;
logic [3:0] m_axi_awqos_reg = '0, m_axi_awqos_next;
logic [3:0] m_axi_awregion_reg = '0, m_axi_awregion_next;
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0, m_axi_awuser_next;
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
logic m_axi_bready_reg = 1'b0, m_axi_bready_next;
// internal datapath
logic [M_DATA_W-1:0] m_axi_wdata_int;
logic [M_STRB_W-1:0] m_axi_wstrb_int;
logic m_axi_wlast_int;
logic [WUSER_W-1:0] m_axi_wuser_int;
logic m_axi_wvalid_int;
logic m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axi_wr.awready = s_axi_awready_reg;
assign s_axi_wr.wready = s_axi_wready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
assign m_axi_wr.awid = '0;
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
assign m_axi_wr.awlen = m_axi_awlen_reg;
assign m_axi_wr.awsize = m_axi_awsize_reg;
assign m_axi_wr.awburst = m_axi_awburst_reg;
assign m_axi_wr.awlock = m_axi_awlock_reg;
assign m_axi_wr.awcache = m_axi_awcache_reg;
assign m_axi_wr.awprot = m_axi_awprot_reg;
assign m_axi_wr.awqos = m_axi_awqos_reg;
assign m_axi_wr.awregion = m_axi_awregion_reg;
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
assign m_axi_wr.bready = m_axi_bready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
wuser_next = wuser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
first_transfer_next = first_transfer_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_buser_next = s_axi_buser_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_wr.awready;
m_axi_bready_next = 1'b0;
m_axi_wdata_int = {(M_BYTE_LANES/S_BYTE_LANES){s_axi_wr.wdata}};
m_axi_wstrb_int = 0;
m_axi_wstrb_int[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axi_wr.wstrb;
m_axi_wlast_int = s_axi_wr.wlast;
m_axi_wuser_int = s_axi_wr.wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_wr.awvalid;
strb_next = '0;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_wr.awid;
m_axi_awid_next = s_axi_wr.awid;
m_axi_awaddr_next = s_axi_wr.awaddr;
addr_next = s_axi_wr.awaddr;
burst_next = s_axi_wr.awlen;
burst_size_next = s_axi_wr.awsize;
if (CONVERT_BURST && s_axi_wr.awcache[1] && (CONVERT_NARROW_BURST || s_axi_wr.awsize == S_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_awlen_next = 8'((({8'd0, s_axi_wr.awlen} << s_axi_wr.awsize) + 16'(s_axi_wr.awaddr[M_ADDR_BIT_OFFSET-1:0])) >> M_BURST_SIZE);
end else begin
m_axi_awlen_next = (s_axi_wr.awlen + 8'(s_axi_wr.awaddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET])) >> CL_SEG_COUNT;
end
m_axi_awsize_next = M_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
master_burst_size_next = s_axi_wr.awsize;
m_axi_awlen_next = s_axi_wr.awlen;
m_axi_awsize_next = s_axi_wr.awsize;
state_next = STATE_DATA;
end
m_axi_awburst_next = s_axi_wr.awburst;
m_axi_awlock_next = s_axi_wr.awlock;
m_axi_awcache_next = s_axi_wr.awcache;
m_axi_awprot_next = s_axi_wr.awprot;
m_axi_awqos_next = s_axi_wr.awqos;
m_axi_awregion_next = s_axi_wr.awregion;
m_axi_awuser_next = s_axi_wr.awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
m_axi_wdata_int = {(M_BYTE_LANES/S_BYTE_LANES){s_axi_wr.wdata}};
m_axi_wstrb_int = 0;
m_axi_wstrb_int[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axi_wr.wstrb;
m_axi_wlast_int = s_axi_wr.wlast;
m_axi_wuser_int = s_axi_wr.wuser;
m_axi_wvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (s_axi_wr.wlast) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_wr.bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (integer i = 0; i < S_BYTE_LANES; i = i + 1) begin
if (s_axi_wr.wstrb[i]) begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_DATA_W+i*M_BYTE_SIZE +: M_BYTE_SIZE] = s_axi_wr.wdata[i*M_BYTE_SIZE +: M_BYTE_SIZE];
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_STRB_W+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = s_axi_wr.wdata;
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*SEG_STRB_W +: SEG_STRB_W] = s_axi_wr.wstrb;
end
m_axi_wdata_int = data_next;
m_axi_wstrb_int = strb_next;
m_axi_wlast_int = s_axi_wr.wlast;
m_axi_wuser_int = s_axi_wr.wuser;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
strb_next = '0;
m_axi_wvalid_int = 1'b1;
end
if (burst_reg == 0) begin
m_axi_wvalid_int = 1'b1;
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_wr.bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_wr.bvalid;
if (m_axi_wr.bready && m_axi_wr.bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_wr.bresp;
s_axi_buser_next = m_axi_wr.buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_wr.awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
wuser_reg <= wuser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
first_transfer_reg <= first_transfer_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_buser_reg <= s_axi_buser_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
end
end
// output datapath logic
logic [M_DATA_W-1:0] m_axi_wdata_reg = '0;
logic [M_STRB_W-1:0] m_axi_wstrb_reg = '0;
logic m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0;
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
logic [M_DATA_W-1:0] temp_m_axi_wdata_reg = '0;
logic [M_STRB_W-1:0] temp_m_axi_wstrb_reg = '0;
logic temp_m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0;
logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
logic store_axi_w_int_to_output;
logic store_axi_w_int_to_temp;
logic store_axi_w_temp_to_output;
assign m_axi_wr.wdata = m_axi_wdata_reg;
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
assign m_axi_wr.wlast = m_axi_wlast_reg;
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wr.wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int));
always_comb begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wr.wready | ~m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wr.wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES;
localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W;
localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [WUSER_W-1:0] wuser_reg = '0, wuser_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [7:0] master_burst_reg = '0, master_burst_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic burst_active_reg = 1'b0, burst_active_next;
logic first_transfer_reg = 1'b0, first_transfer_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
logic [ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
logic [1:0] s_axi_bresp_reg = '0, s_axi_bresp_next;
logic [BUSER_W-1:0] s_axi_buser_reg = '0, s_axi_buser_next;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ID_W-1:0] m_axi_awid_reg = '0, m_axi_awid_next;
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0, m_axi_awaddr_next;
logic [7:0] m_axi_awlen_reg = '0, m_axi_awlen_next;
logic [2:0] m_axi_awsize_reg = '0, m_axi_awsize_next;
logic [1:0] m_axi_awburst_reg = '0, m_axi_awburst_next;
logic m_axi_awlock_reg = '0, m_axi_awlock_next;
logic [3:0] m_axi_awcache_reg = '0, m_axi_awcache_next;
logic [2:0] m_axi_awprot_reg = '0, m_axi_awprot_next;
logic [3:0] m_axi_awqos_reg = '0, m_axi_awqos_next;
logic [3:0] m_axi_awregion_reg = '0, m_axi_awregion_next;
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0, m_axi_awuser_next;
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
logic m_axi_bready_reg = 1'b0, m_axi_bready_next;
// internal datapath
logic [M_DATA_W-1:0] m_axi_wdata_int;
logic [M_STRB_W-1:0] m_axi_wstrb_int;
logic m_axi_wlast_int;
logic [WUSER_W-1:0] m_axi_wuser_int;
logic m_axi_wvalid_int;
logic m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axi_wr.awready = s_axi_awready_reg;
assign s_axi_wr.wready = s_axi_wready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
assign m_axi_wr.awid = '0;
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
assign m_axi_wr.awlen = m_axi_awlen_reg;
assign m_axi_wr.awsize = m_axi_awsize_reg;
assign m_axi_wr.awburst = m_axi_awburst_reg;
assign m_axi_wr.awlock = m_axi_awlock_reg;
assign m_axi_wr.awcache = m_axi_awcache_reg;
assign m_axi_wr.awprot = m_axi_awprot_reg;
assign m_axi_wr.awqos = m_axi_awqos_reg;
assign m_axi_wr.awregion = m_axi_awregion_reg;
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
assign m_axi_wr.bready = m_axi_bready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
wuser_next = wuser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
first_transfer_next = first_transfer_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_buser_next = s_axi_buser_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_wr.awready;
m_axi_bready_next = 1'b0;
m_axi_wdata_int = data_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W];
m_axi_wstrb_int = strb_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W];
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_wr.awvalid;
first_transfer_next = 1'b1;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_wr.awid;
m_axi_awid_next = s_axi_wr.awid;
m_axi_awaddr_next = s_axi_wr.awaddr;
addr_next = s_axi_wr.awaddr;
burst_next = s_axi_wr.awlen;
burst_size_next = s_axi_wr.awsize;
burst_active_next = 1'b1;
if (s_axi_wr.awsize > M_BURST_SIZE) begin
// need to adjust burst size
if (s_axi_wr.awlen >> (8+M_BURST_SIZE-s_axi_wr.awsize) != 0) begin
// limit burst length to max
master_burst_next = 8'(32'hff << 3'(s_axi_wr.awsize-M_BURST_SIZE)) | 8'((8'(~s_axi_wr.awaddr) & 8'(8'hff >> (8-s_axi_wr.awsize))) >> M_BURST_SIZE);
end else begin
master_burst_next = 8'(s_axi_wr.awlen << 3'(s_axi_wr.awsize-M_BURST_SIZE)) | 8'((8'(~s_axi_wr.awaddr) & 8'(8'hff >> (8-s_axi_wr.awsize))) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_wr.awlen;
master_burst_size_next = s_axi_wr.awsize;
m_axi_awlen_next = s_axi_wr.awlen;
m_axi_awsize_next = s_axi_wr.awsize;
end
m_axi_awburst_next = s_axi_wr.awburst;
m_axi_awlock_next = s_axi_wr.awlock;
m_axi_awcache_next = s_axi_wr.awcache;
m_axi_awprot_next = s_axi_wr.awprot;
m_axi_awqos_next = s_axi_wr.awqos;
m_axi_awregion_next = s_axi_wr.awregion;
m_axi_awuser_next = s_axi_wr.awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
data_next = s_axi_wr.wdata;
strb_next = s_axi_wr.wstrb;
wuser_next = s_axi_wr.wuser;
m_axi_wdata_int = s_axi_wr.wdata[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W];
m_axi_wstrb_int = s_axi_wr.wstrb[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W];
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = s_axi_wr.wuser;
m_axi_wvalid_int = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
if (master_burst_reg == 0) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_wr.bvalid && !s_axi_wr.awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (m_axi_wready_int_reg) begin
m_axi_wdata_int = data_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_W +: M_DATA_W];
m_axi_wstrb_int = strb_reg[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_W +: M_STRB_W];
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b1;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
if (master_burst_reg == 0) begin
// burst on master interface finished; transfer response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_wr.bvalid && !m_axi_wr.awvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi.bvalid && !m_axi.awvalid;
if (m_axi.bready && m_axi.bvalid) begin
first_transfer_next = 1'b0;
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axi.bresp != 0) begin
s_axi_bresp_next = m_axi.bresp;
end
if (burst_reg >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = (burst_reg << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_awaddr_next = addr_reg;
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
if (burst_active_reg) begin
// burst on slave interface still active; start new burst
m_axi_awvalid_next = 1'b1;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi.awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
wuser_reg <= wuser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
first_transfer_reg <= first_transfer_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_buser_reg <= s_axi_buser_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
end
end
// output datapath logic
logic [M_DATA_W-1:0] m_axi_wdata_reg = '0;
logic [M_STRB_W-1:0] m_axi_wstrb_reg = '0;
logic m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0;
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
logic [M_DATA_W-1:0] temp_m_axi_wdata_reg = '0;
logic [M_STRB_W-1:0] temp_m_axi_wstrb_reg = '0;
logic temp_m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0;
logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
logic store_axi_w_int_to_output;
logic store_axi_w_int_to_temp;
logic store_axi_w_temp_to_output;
assign m_axi_wr.wdata = m_axi_wdata_reg;
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
assign m_axi_wr.wlast = m_axi_wlast_reg;
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wr.wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int));
always_comb begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wr.wready | ~m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wr.wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
end
end
endmodule
`resetall